Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):1256–1264. doi: 10.1128/jvi.71.2.1256-1264.1997

Overlapping epitopes in human immunodeficiency virus type 1 gp120 presented by HLA A, B, and C molecules: effects of viral variation on cytotoxic T-lymphocyte recognition.

C C Wilson 1, S A Kalams 1, B M Wilkes 1, D J Ruhl 1, F Gao 1, B H Hahn 1, I C Hanson 1, K Luzuriaga 1, S Wolinsky 1, R Koup 1, S P Buchbinder 1, R P Johnson 1, B D Walker 1
PMCID: PMC191180  PMID: 8995649

Abstract

Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) are thought to exert immunologic selection pressure in infected persons, yet few data regarding the effects of this constraint on viral sequence variation in vivo, particularly in the highly variable Env protein, are available. In this study, CD8+ HIV type 1 (HIV-1) envelope-specific CTL clones specific for gp120 were isolated from peripheral blood mononuclear cells of four HIV-infected individuals, all of which recognized the same 25-amino-acid (aa) peptide (aa 371 to 395), which is partially contained in the CD4-binding domain of HIV-1 gp120. Fine mapping studies revealed that two of the clones optimally recognized the 9-aa sequence 375 to 383 (SFNCGGEFF), while the two other clones optimally recognized the epitope contained in the overlapping 9-aa sequence 376 to 384 (FNCGGEFFY). Lysis of target cells by the two clones recognizing aa 375 to 383 was restricted by HLA B15 and Cw4, respectively, whereas both clones recognizing aa 376 to 384 were restricted by HLA A29. Sequence variation, relative to the IIIB strain sequence used to identify CTL clones, was observed in autologous viruses in the epitope-containing region in all four subjects. However, poorly recognized autologous sequence variants were predominantly seen for the A29-restricted clones, whereas the clones specific for SFNCGGEFF continued to recognize the predominant autologous sequences. These results suggest that the HLA profile of an individual may not only be important in determining the specificity of CTL recognition but may also affect the ability to recognize virus variants and suppress escape from CTL recognition. These results also identify overlapping viral CTL epitopes which can be presented by HLA A, B, and C molecules.

Full Text

The Full Text of this article is available as a PDF (222.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borrow P., Lewicki H., Hahn B. H., Shaw G. M., Oldstone M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994 Sep;68(9):6103–6110. doi: 10.1128/jvi.68.9.6103-6110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
  3. Couillin I., Culmann-Penciolelli B., Gomard E., Choppin J., Levy J. P., Guillet J. G., Saragosti S. Impaired cytotoxic T lymphocyte recognition due to genetic variations in the main immunogenic region of the human immunodeficiency virus 1 NEF protein. J Exp Med. 1994 Sep 1;180(3):1129–1134. doi: 10.1084/jem.180.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Earl P. L., Koenig S., Moss B. Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J Virol. 1991 Jan;65(1):31–41. doi: 10.1128/jvi.65.1.31-41.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Falk K., Rötzschke O., Grahovac B., Schendel D., Stevanović S., Gnau V., Jung G., Strominger J. L., Rammensee H. G. Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):12005–12009. doi: 10.1073/pnas.90.24.12005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faulkner D. V., Jurka J. Multiple aligned sequence editor (MASE). Trends Biochem Sci. 1988 Aug;13(8):321–322. doi: 10.1016/0968-0004(88)90129-6. [DOI] [PubMed] [Google Scholar]
  7. Ferbas J., Kaplan A. H., Hausner M. A., Hultin L. E., Matud J. L., Liu Z., Panicali D. L., Nerng-Ho H., Detels R., Giorgi J. V. Virus burden in long-term survivors of human immunodeficiency virus (HIV) infection is a determinant of anti-HIV CD8+ lymphocyte activity. J Infect Dis. 1995 Aug;172(2):329–339. doi: 10.1093/infdis/172.2.329. [DOI] [PubMed] [Google Scholar]
  8. Goodenow M., Huet T., Saurin W., Kwok S., Sninsky J., Wain-Hobson S. HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Syndr. 1989;2(4):344–352. [PubMed] [Google Scholar]
  9. Harrer T., Harrer E., Kalams S. A., Barbosa P., Trocha A., Johnson R. P., Elbeik T., Feinberg M. B., Buchbinder S. P., Walker B. D. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol. 1996 Apr 1;156(7):2616–2623. [PubMed] [Google Scholar]
  10. Haynes B. F., Pantaleo G., Fauci A. S. Toward an understanding of the correlates of protective immunity to HIV infection. Science. 1996 Jan 19;271(5247):324–328. doi: 10.1126/science.271.5247.324. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. P., Trocha A., Buchanan T. M., Walker B. D. Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J Exp Med. 1992 Apr 1;175(4):961–971. doi: 10.1084/jem.175.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson R. P., Trocha A., Buchanan T. M., Walker B. D. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol. 1993 Jan;67(1):438–445. doi: 10.1128/jvi.67.1.438-445.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. P., Trocha A., Yang L., Mazzara G. P., Panicali D. L., Buchanan T. M., Walker B. D. HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes. Fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononuclear cells and cloned effector cells. J Immunol. 1991 Sep 1;147(5):1512–1521. [PubMed] [Google Scholar]
  14. Kalams S. A., Johnson R. P., Dynan M. J., Hartman K. E., Harrer T., Harrer E., Trocha A. K., Blattner W. A., Buchbinder S. P., Walker B. D. T cell receptor usage and fine specificity of human immunodeficiency virus 1-specific cytotoxic T lymphocyte clones: analysis of quasispecies recognition reveals a dominant response directed against a minor in vivo variant. J Exp Med. 1996 Apr 1;183(4):1669–1679. doi: 10.1084/jem.183.4.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaslow R. A., Carrington M., Apple R., Park L., Muñoz A., Saah A. J., Goedert J. J., Winkler C., O'Brien S. J., Rinaldo C. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med. 1996 Apr;2(4):405–411. doi: 10.1038/nm0496-405. [DOI] [PubMed] [Google Scholar]
  16. Klein M. R., van Baalen C. A., Holwerda A. M., Kerkhof Garde S. R., Bende R. J., Keet I. P., Eeftinck-Schattenkerk J. K., Osterhaus A. D., Schuitemaker H., Miedema F. Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med. 1995 Apr 1;181(4):1365–1372. doi: 10.1084/jem.181.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu S. L., Rodrigo A. G., Shankarappa R., Learn G. H., Hsu L., Davidov O., Zhao L. P., Mullins J. I. HIV quasispecies and resampling. Science. 1996 Jul 26;273(5274):415–416. doi: 10.1126/science.273.5274.415. [DOI] [PubMed] [Google Scholar]
  19. Moskophidis D., Zinkernagel R. M. Immunobiology of cytotoxic T-cell escape mutants of lymphocytic choriomeningitis virus. J Virol. 1995 Apr;69(4):2187–2193. doi: 10.1128/jvi.69.4.2187-2193.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nowak M. A., May R. M., Phillips R. E., Rowland-Jones S., Lalloo D. G., McAdam S., Klenerman P., Köppe B., Sigmund K., Bangham C. R. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature. 1995 Jun 15;375(6532):606–611. doi: 10.1038/375606a0. [DOI] [PubMed] [Google Scholar]
  21. Olshevsky U., Helseth E., Furman C., Li J., Haseltine W., Sodroski J. Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol. 1990 Dec;64(12):5701–5707. doi: 10.1128/jvi.64.12.5701-5707.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pantaleo G., Demarest J. F., Soudeyns H., Graziosi C., Denis F., Adelsberger J. W., Borrow P., Saag M. S., Shaw G. M., Sekaly R. P. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature. 1994 Aug 11;370(6489):463–467. doi: 10.1038/370463a0. [DOI] [PubMed] [Google Scholar]
  23. Phillips R. E., Rowland-Jones S., Nixon D. F., Gotch F. M., Edwards J. P., Ogunlesi A. O., Elvin J. G., Rothbard J. A., Bangham C. R., Rizza C. R. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 1991 Dec 12;354(6353):453–459. doi: 10.1038/354453a0. [DOI] [PubMed] [Google Scholar]
  24. Rammensee H. G. Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol. 1995 Feb;7(1):85–96. doi: 10.1016/0952-7915(95)80033-6. [DOI] [PubMed] [Google Scholar]
  25. Rinaldo C., Huang X. L., Fan Z. F., Ding M., Beltz L., Logar A., Panicali D., Mazzara G., Liebmann J., Cottrill M. High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J Virol. 1995 Sep;69(9):5838–5842. doi: 10.1128/jvi.69.9.5838-5842.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salvato M., Borrow P., Shimomaye E., Oldstone M. B. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol. 1991 Apr;65(4):1863–1869. doi: 10.1128/jvi.65.4.1863-1869.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ungphakorn J., Sittitrai W. The Thai response to the HIV/AIDS epidemic. AIDS. 1994;8 (Suppl 2):S155–S163. [PubMed] [Google Scholar]
  28. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987 Jul 23;328(6128):345–348. doi: 10.1038/328345a0. [DOI] [PubMed] [Google Scholar]
  29. Walker B. D., Flexner C., Birch-Limberger K., Fisher L., Paradis T. J., Aldovini A., Young R., Moss B., Schooley R. T. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9514–9518. doi: 10.1073/pnas.86.23.9514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wolinsky S. M., Korber B. T., Neumann A. U., Daniels M., Kunstman K. J., Whetsell A. J., Furtado M. R., Cao Y., Ho D. D., Safrit J. T. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science. 1996 Apr 26;272(5261):537–542. doi: 10.1126/science.272.5261.537. [DOI] [PubMed] [Google Scholar]
  31. Wong J. T., Colvin R. B. Bi-specific monoclonal antibodies: selective binding and complement fixation to cells that express two different surface antigens. J Immunol. 1987 Aug 15;139(4):1369–1374. [PubMed] [Google Scholar]
  32. Yasutomi Y., Reimann K. A., Lord C. I., Miller M. D., Letvin N. L. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J Virol. 1993 Mar;67(3):1707–1711. doi: 10.1128/jvi.67.3.1707-1711.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES