Abstract
Gene therapy strategies for humans have been limited by low transduction efficiencies and poor expression of retroviral vectors in differentiated progeny cells carrying the transduced vector. Here we describe a strategy utilizing a cell surface reporter gene, murine thy-1.2, selectable by fluorescence-activated cell sorting (FACS), to achieve higher gene marking efficiencies. Human CD34-positive cells were transduced by a murine retroviral vector bearing the thy-1.2 marker and pseudotyped with vesicular stomatitis virus G protein, followed by FACS to enrich for CD34-positive cells that express Thy-1.2 on the cell surface. Gene marking and expression after differentiation into thymocytes were assessed in a SCID-hu Thy/Liv mouse model for human lymphoid progenitor cell gene therapy. We found that virtually all of the differentiated T-cell progeny were marked with vector sequences. It is of particular importance that reconstitution with the selected cells resulted in expression of Thy-1.2 in up to 71% of donor-derived thymocytes. It is of note that the donor-derived thymocytes that did not express Thy-1.2 still harbored vector thy-1.2 sequences, suggesting repression of transgene expression in some cells during progenitor cell differentiation into thymocytes. These studies provide a proof of concept for efficient expression of transgenes through T-lymphoid differentiation and a potential basis for utilizing similar strategies in human gene therapy clinical trials.
Full Text
The Full Text of this article is available as a PDF (408.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akkina R. K., Rosenblatt J. D., Campbell A. G., Chen I. S., Zack J. A. Modeling human lymphoid precursor cell gene therapy in the SCID-hu mouse. Blood. 1994 Sep 1;84(5):1393–1398. [PubMed] [Google Scholar]
- Akkina R. K., Walton R. M., Chen M. L., Li Q. X., Planelles V., Chen I. S. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol. 1996 Apr;70(4):2581–2585. doi: 10.1128/jvi.70.4.2581-2585.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arrigo S. J., Weitsman S., Zack J. A., Chen I. S. Characterization and expression of novel singly spliced RNA species of human immunodeficiency virus type 1. J Virol. 1990 Sep;64(9):4585–4588. doi: 10.1128/jvi.64.9.4585-4588.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bordignon C., Notarangelo L. D., Nobili N., Ferrari G., Casorati G., Panina P., Mazzolari E., Maggioni D., Rossi C., Servida P. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995 Oct 20;270(5235):470–475. doi: 10.1126/science.270.5235.470. [DOI] [PubMed] [Google Scholar]
- Brenner M. K., Rill D. R., Holladay M. S., Heslop H. E., Moen R. C., Buschle M., Krance R. A., Santana V. M., Anderson W. F., Ihle J. N. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet. 1993 Nov 6;342(8880):1134–1137. doi: 10.1016/0140-6736(93)92122-a. [DOI] [PubMed] [Google Scholar]
- Burns J. C., Friedmann T., Driever W., Burrascano M., Yee J. K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8033–8037. doi: 10.1073/pnas.90.17.8033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassel A., Cottler-Fox M., Doren S., Dunbar C. E. Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp Hematol. 1993 Apr;21(4):585–591. [PubMed] [Google Scholar]
- Challita P. M., Skelton D., el-Khoueiry A., Yu X. J., Weinberg K., Kohn D. B. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol. 1995 Feb;69(2):748–755. doi: 10.1128/jvi.69.2.748-755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Champseix C., Maréchal V., Khazaal I., Schwartz O., Fournier S., Schlegel N., Dranoff G., Danos O., Blot P., Vilmer E. A cell surface marker gene transferred with a retroviral vector into CD34+ cord blood cells is expressed by their T-cell progeny in the SCID-hu thymus. Blood. 1996 Jul 1;88(1):107–113. [PubMed] [Google Scholar]
- Crystal R. G. Transfer of genes to humans: early lessons and obstacles to success. Science. 1995 Oct 20;270(5235):404–410. doi: 10.1126/science.270.5235.404. [DOI] [PubMed] [Google Scholar]
- Dunbar C. E., Cottler-Fox M., O'Shaughnessy J. A., Doren S., Carter C., Berenson R., Brown S., Moen R. C., Greenblatt J., Stewart F. M. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood. 1995 Jun 1;85(11):3048–3057. [PubMed] [Google Scholar]
- Friedmann T. Human gene therapy--an immature genie, but certainly out of the bottle. Nat Med. 1996 Feb;2(2):144–147. doi: 10.1038/nm0296-144. [DOI] [PubMed] [Google Scholar]
- Giguére V., Isobe K., Grosveld F. Structure of the murine Thy-1 gene. EMBO J. 1985 Aug;4(8):2017–2024. doi: 10.1002/j.1460-2075.1985.tb03886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes P. F., Thacker J. D., Hogge D., Sutherland H. J., Thomas T. E., Lansdorp P. M., Eaves C. J., Humphries R. K. Retroviral gene transfer to primitive normal and leukemic hematopoietic cells using clinically applicable procedures. J Clin Invest. 1992 Jun;89(6):1817–1824. doi: 10.1172/JCI115786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohn D. B., Weinberg K. I., Nolta J. A., Heiss L. N., Lenarsky C., Crooks G. M., Hanley M. E., Annett G., Brooks J. S., el-Khoureiy A. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med. 1995 Oct;1(10):1017–1023. doi: 10.1038/nm1095-1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landau N. R., Littman D. R. Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J Virol. 1992 Aug;66(8):5110–5113. doi: 10.1128/jvi.66.8.5110-5113.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorré K., Kasran A., Van Vaeck F., de Boer M., Ceuppens J. L. Interleukin-1 and B7/CD28 interaction regulate interleukin-6 production by human T cells. Clin Immunol Immunopathol. 1994 Jan;70(1):81–90. doi: 10.1006/clin.1994.1014. [DOI] [PubMed] [Google Scholar]
- Masuda T., Planelles V., Krogstad P., Chen I. S. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J Virol. 1995 Nov;69(11):6687–6696. doi: 10.1128/jvi.69.11.6687-6696.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mavilio F., Ferrari G., Rossini S., Nobili N., Bonini C., Casorati G., Traversari C., Bordignon C. Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood. 1994 Apr 1;83(7):1988–1997. [PubMed] [Google Scholar]
- McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 Sep 23;241(4873):1632–1639. doi: 10.1126/science.241.4873.1632. [DOI] [PubMed] [Google Scholar]
- Miller A. D., Garcia J. V., von Suhr N., Lynch C. M., Wilson C., Eiden M. V. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. 1991 May;65(5):2220–2224. doi: 10.1128/jvi.65.5.2220-2224.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
- Muller A. J., Young J. C., Pendergast A. M., Pondel M., Landau N. R., Littman D. R., Witte O. N. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol. 1991 Apr;11(4):1785–1792. doi: 10.1128/mcb.11.4.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulligan R. C. The basic science of gene therapy. Science. 1993 May 14;260(5110):926–932. doi: 10.1126/science.8493530. [DOI] [PubMed] [Google Scholar]
- Nakahori Y., Hamano K., Iwaya M., Nakagome Y. Sex identification by polymerase chain reaction using X-Y homologous primer. Am J Med Genet. 1991 Jun 15;39(4):472–473. doi: 10.1002/ajmg.1320390420. [DOI] [PubMed] [Google Scholar]
- O'Brien W. A., Namazi A., Kalhor H., Mao S. H., Zack J. A., Chen I. S. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J Virol. 1994 Feb;68(2):1258–1263. doi: 10.1128/jvi.68.2.1258-1263.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang S., Koyanagi Y., Miles S., Wiley C., Vinters H. V., Chen I. S. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990 Jan 4;343(6253):85–89. doi: 10.1038/343085a0. [DOI] [PubMed] [Google Scholar]
- Pawliuk R., Kay R., Lansdorp P., Humphries R. K. Selection of retrovirally transduced hematopoietic cells using CD24 as a marker of gene transfer. Blood. 1994 Nov 1;84(9):2868–2877. [PubMed] [Google Scholar]
- Planelles V., Haislip A., Withers-Ward E. S., Stewart S. A., Xie Y., Shah N. P., Chen I. S. A new reporter system for detection of retroviral infection. Gene Ther. 1995 Aug;2(6):369–376. [PubMed] [Google Scholar]
- Schmid I., Krall W. J., Uittenbogaart C. H., Braun J., Giorgi J. V. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992;13(2):204–208. doi: 10.1002/cyto.990130216. [DOI] [PubMed] [Google Scholar]
- Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma I. M. Gene therapy: hopes, hypes, and hurdles. Mol Med. 1994 Nov;1(1):2–3. [PMC free article] [PubMed] [Google Scholar]
- Verwilghen J., Baroja M. L., Van Vaeck F., Van Damme J., Ceuppens J. L. Differences in the stimulating capacity of immobilized anti-CD3 monoclonal antibodies: variable dependence on interleukin-1 as a helper signal for T-cell activation. Immunology. 1991 Feb;72(2):269–276. [PMC free article] [PubMed] [Google Scholar]
- Yee J. K., Miyanohara A., LaPorte P., Bouic K., Burns J. C., Friedmann T. A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9564–9568. doi: 10.1073/pnas.91.20.9564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]