Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):1428–1435. doi: 10.1128/jvi.71.2.1428-1435.1997

Encapsidation of turnip crinkle virus is defined by a specific packaging signal and RNA size.

F Qu 1, T J Morris 1
PMCID: PMC191199  PMID: 8995668

Abstract

A protoplast infection assay has been used to reliably examine the viral RNA encapsidation of turnip crinkle virus (TCV). Analysis of the encapsidation of various mutant viral RNAs revealed that a 186-nucleotide (nt) region at the 3' end of the coat protein (CP) gene, with a bulged hairpin loop of 28 nt as its most essential element, was indispensable for TCV RNA encapsidation. When RNA fragments containing the 186-nt region were used to replace the CP gene of a different virus, tomato bushy stunt virus, the resulting chimeric viral RNAs were encapsidated into TCV virions. Furthermore, analysis of the encapsidated chimeric RNA species established that the RNA size was an important determinant of the TCV assembly process.

Full Text

The Full Text of this article is available as a PDF (477.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartenschlager R., Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J. 1992 Sep;11(9):3413–3420. doi: 10.1002/j.1460-2075.1992.tb05420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckett D., Wu H. N., Uhlenbeck O. C. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly. J Mol Biol. 1988 Dec 20;204(4):939–947. doi: 10.1016/0022-2836(88)90053-8. [DOI] [PubMed] [Google Scholar]
  3. Carrington J. C., Heaton L. A., Zuidema D., Hillman B. I., Morris T. J. The genome structure of turnip crinkle virus. Virology. 1989 May;170(1):219–226. doi: 10.1016/0042-6822(89)90369-3. [DOI] [PubMed] [Google Scholar]
  4. Dolja V. V., Haldeman-Cahill R., Montgomery A. E., Vandenbosch K. A., Carrington J. C. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology. 1995 Feb 1;206(2):1007–1016. doi: 10.1006/viro.1995.1023. [DOI] [PubMed] [Google Scholar]
  5. Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C. Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J. 1994 Mar 15;13(6):1482–1491. doi: 10.1002/j.1460-2075.1994.tb06403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duggal R., Hall T. C. Identification of domains in brome mosaic virus RNA-1 and coat protein necessary for specific interaction and encapsidation. J Virol. 1993 Nov;67(11):6406–6412. doi: 10.1128/jvi.67.11.6406-6412.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujimura T., Esteban R., Esteban L. M., Wickner R. B. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell. 1990 Aug 24;62(4):819–828. doi: 10.1016/0092-8674(90)90125-x. [DOI] [PubMed] [Google Scholar]
  8. Hacker D. L., Petty I. T., Wei N., Morris T. J. Turnip crinkle virus genes required for RNA replication and virus movement. Virology. 1992 Jan;186(1):1–8. doi: 10.1016/0042-6822(92)90055-t. [DOI] [PubMed] [Google Scholar]
  9. Hearne P. Q., Knorr D. A., Hillman B. I., Morris T. J. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology. 1990 Jul;177(1):141–151. doi: 10.1016/0042-6822(90)90468-7. [DOI] [PubMed] [Google Scholar]
  10. Heaton L. A., Carrington J. C., Morris T. J. Turnip crinkle virus infection from RNA synthesized in vitro. Virology. 1989 May;170(1):214–218. doi: 10.1016/0042-6822(89)90368-1. [DOI] [PubMed] [Google Scholar]
  11. Hogle J. M., Maeda A., Harrison S. C. Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 A resolution. J Mol Biol. 1986 Oct 20;191(4):625–638. doi: 10.1016/0022-2836(86)90450-x. [DOI] [PubMed] [Google Scholar]
  12. Jones R. W., Jackson A. O., Morris T. J. Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology. 1990 Jun;176(2):539–545. doi: 10.1016/0042-6822(90)90024-l. [DOI] [PubMed] [Google Scholar]
  13. Junker-Niepmann M., Bartenschlager R., Schaller H. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J. 1990 Oct;9(10):3389–3396. doi: 10.1002/j.1460-2075.1990.tb07540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li X. H., Heaton L. A., Morris T. J., Simon A. E. Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9173–9177. doi: 10.1073/pnas.86.23.9173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ling C. M., Hung P. P., Overby L. R. Independent assembly of Qbeta and MS2 phages in doubly infected Escherichia coli. Virology. 1970 Apr;40(4):920–929. doi: 10.1016/0042-6822(70)90138-8. [DOI] [PubMed] [Google Scholar]
  16. Linial M. L., Miller A. D. Retroviral RNA packaging: sequence requirements and implications. Curr Top Microbiol Immunol. 1990;157:125–152. doi: 10.1007/978-3-642-75218-6_5. [DOI] [PubMed] [Google Scholar]
  17. Mindich L., Qiao X., Qiao J. Packaging of multiple copies of reduced-size genomic segments by bacteriophage phi 6. Virology. 1995 Sep 10;212(1):213–217. doi: 10.1006/viro.1995.1470. [DOI] [PubMed] [Google Scholar]
  18. Onodera S., Qiao X., Qiao J., Mindich L. Acquisition of a fourth genomic segment in bacteriophage phi 6, a bacteriophage with a genome of three segments of dsRNA. Virology. 1995 Sep 10;212(1):204–212. doi: 10.1006/viro.1995.1469. [DOI] [PubMed] [Google Scholar]
  19. Pollack J. R., Ganem D. Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. J Virol. 1994 Sep;68(9):5579–5587. doi: 10.1128/jvi.68.9.5579-5587.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Qu F., Zhai W., Chen H., Zhu L. H., Morris T. J. Cloning, characterization and transient expression of the gene encoding a rice U3 small nuclear RNA. Gene. 1996 Jun 26;172(2):217–220. doi: 10.1016/0378-1119(96)00056-x. [DOI] [PubMed] [Google Scholar]
  21. Rochon D., Siegel A. Chloroplast DNA transcripts are encapsidated by tobacco mosaic virus coat protein. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1719–1723. doi: 10.1073/pnas.81.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Romaniuk P. J., Lowary P., Wu H. N., Stormo G., Uhlenbeck O. C. RNA binding site of R17 coat protein. Biochemistry. 1987 Mar 24;26(6):1563–1568. doi: 10.1021/bi00380a011. [DOI] [PubMed] [Google Scholar]
  23. Skuzeski J. M., Morris T. J. Quantitative analysis of the binding of turnip crinkle virus coat protein to RNA fails to demonstrate binding specificity but reveals a highly cooperative assembly interaction. Virology. 1995 Jun 20;210(1):82–90. doi: 10.1006/viro.1995.1319. [DOI] [PubMed] [Google Scholar]
  24. Vaewhongs A. A., Lommel S. A. Virion formation is required for the long-distance movement of red clover necrotic mosaic virus in movement protein transgenic plants. Virology. 1995 Oct 1;212(2):607–613. doi: 10.1006/viro.1995.1518. [DOI] [PubMed] [Google Scholar]
  25. Wei N., Hacker D. L., Morris T. J. Characterization of an internal element in turnip crinkle virus RNA involved in both coat protein binding and replication. Virology. 1992 Sep;190(1):346–355. doi: 10.1016/0042-6822(92)91221-f. [DOI] [PubMed] [Google Scholar]
  26. Wei N., Heaton L. A., Morris T. J., Harrison S. C. Structure and assembly of turnip crinkle virus. VI. Identification of coat protein binding sites on the RNA. J Mol Biol. 1990 Jul 5;214(1):85–95. doi: 10.1016/0022-2836(90)90148-F. [DOI] [PubMed] [Google Scholar]
  27. Wei N., Morris T. J. Interactions between viral coat protein and a specific binding region on turnip crinkle virus RNA. J Mol Biol. 1991 Dec 5;222(3):437–443. doi: 10.1016/0022-2836(91)90483-m. [DOI] [PubMed] [Google Scholar]
  28. Weiss B., Geigenmüller-Gnirke U., Schlesinger S. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site. Nucleic Acids Res. 1994 Mar 11;22(5):780–786. doi: 10.1093/nar/22.5.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss B., Nitschko H., Ghattas I., Wright R., Schlesinger S. Evidence for specificity in the encapsidation of Sindbis virus RNAs. J Virol. 1989 Dec;63(12):5310–5318. doi: 10.1128/jvi.63.12.5310-5318.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. White K. A., Morris T. J. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. J Virol. 1994 Jan;68(1):14–24. doi: 10.1128/jvi.68.1.14-24.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. White K. A., Morris T. J. RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA. 1995 Dec;1(10):1029–1040. [PMC free article] [PubMed] [Google Scholar]
  32. White K. A., Skuzeski J. M., Li W., Wei N., Morris T. J. Immunodetection, expression strategy and complementation of turnip crinkle virus p28 and p88 replication components. Virology. 1995 Aug 20;211(2):525–534. doi: 10.1006/viro.1995.1434. [DOI] [PubMed] [Google Scholar]
  33. Witherell G. W., Gott J. M., Uhlenbeck O. C. Specific interaction between RNA phage coat proteins and RNA. Prog Nucleic Acid Res Mol Biol. 1991;40:185–220. doi: 10.1016/s0079-6603(08)60842-9. [DOI] [PubMed] [Google Scholar]
  34. Zhao X., Fox J. M., Olson N. H., Baker T. S., Young M. J. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology. 1995 Mar 10;207(2):486–494. doi: 10.1006/viro.1995.1108. [DOI] [PubMed] [Google Scholar]
  35. Zhong W., Dasgupta R., Rueckert R. Evidence that the packaging signal for nodaviral RNA2 is a bulged stem-loop. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11146–11150. doi: 10.1073/pnas.89.23.11146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zimmern D., Butler P. J. The isolation of tobacco mosaic virus RNA fragments containing the origin for viral assembly. Cell. 1977 Jul;11(3):455–462. doi: 10.1016/0092-8674(77)90064-2. [DOI] [PubMed] [Google Scholar]
  37. Zimmern D. The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA. Cell. 1977 Jul;11(3):463–482. doi: 10.1016/0092-8674(77)90065-4. [DOI] [PubMed] [Google Scholar]
  38. van der Vossen E. A., Neeleman L., Bol J. F. Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology. 1994 Aug 1;202(2):891–903. doi: 10.1006/viro.1994.1411. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES