Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):1466–1475. doi: 10.1128/jvi.71.2.1466-1475.1997

Initiation of vesicular stomatitis virus mutant polR1 transcription internally at the N gene in vitro.

J L Chuang 1, J Perrault 1
PMCID: PMC191203  PMID: 8995672

Abstract

The vesicular stomatitis virus (VSV) polymerase is thought to initiate transcription of its genome by first copying a small leader RNA complementary to the 3' end of the template. The polR VSV mutants, in contrast to wild-type virus, frequently read through the leader termination site during transcription in vitro. To shed light on polymerase termination and reinitiation events at the crucial leader-N gene junction, we employed RNase protection assays to precisely measure molar ratios of leader, N, and readthrough transcript accumulation in vitro. Wild-type virus synthesized essentially equimolar amounts of leader and N transcripts, but, unexpectedly, the polR1 mutant yielded about twice as much N mRNA as leader (ratio of 1.9 +/- 0.1). Primer extension assays ruled out an increase in abortive N transcript synthesis for polR1. Transcription entailed multiple rounds of synthesis, with transcript ratios remaining the same after 0.5 or 2 h of synthesis, ruling out a significant contribution from polymerases "pre-positioned" at the N gene. No significant degradation of either leader or N transcripts was observed after incubating purified products with virions. Our data lead us to conclude that transcription can initiate internally at the N gene, at least in the case of polR1 VSV. We propose, however, that productive internal initiation of transcription is a fundamental property of the VSV polymerase and that of related viruses. A model postulating two distinct polymerase complexes, one for leader synthesis and one for internal initiation, is presented.

Full Text

The Full Text of this article is available as a PDF (476.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A. K., Barik S. Gene expression of vesicular stomatitis virus genome RNA. Virology. 1992 Jun;188(2):417–428. doi: 10.1016/0042-6822(92)90495-b. [DOI] [PubMed] [Google Scholar]
  2. Beckes J. D., Haller A. A., Perrault J. Differential effect of ATP concentration on synthesis of vesicular stomatitis virus leader RNAs and mRNAs. J Virol. 1987 Nov;61(11):3470–3478. doi: 10.1128/jvi.61.11.3470-3478.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castaneda S. J., Wong T. C. Measles virus synthesizes both leaderless and leader-containing polyadenylated RNAs in vivo. J Virol. 1989 Jul;63(7):2977–2986. doi: 10.1128/jvi.63.7.2977-2986.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crowley J. C., Dowling P. C., Menonna J., Silverman J. I., Schuback D., Cook S. D., Blumberg B. M. Sequence variability and function of measles virus 3' and 5' ends and intercistronic regions. Virology. 1988 Jun;164(2):498–506. doi: 10.1016/0042-6822(88)90564-8. [DOI] [PubMed] [Google Scholar]
  5. De B. P., Banerjee A. K. Requirements and functions of vesicular stomatitis virus L and NS proteins in the transcription process in vitro. Biochem Biophys Res Commun. 1985 Jan 16;126(1):40–49. doi: 10.1016/0006-291x(85)90568-6. [DOI] [PubMed] [Google Scholar]
  6. Emerson S. U. Reconstitution studies detect a single polymerase entry site on the vesicular stomatitis virus genome. Cell. 1982 Dec;31(3 Pt 2):635–642. doi: 10.1016/0092-8674(82)90319-1. [DOI] [PubMed] [Google Scholar]
  7. Fernandez-Larsson R., O'Connell K., Koumans E., Patterson J. L. Molecular analysis of the inhibitory effect of phosphorylated ribavirin on the vesicular stomatitis virus in vitro polymerase reaction. Antimicrob Agents Chemother. 1989 Oct;33(10):1668–1673. doi: 10.1128/aac.33.10.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernandez-Larsson R., Patterson J. L. Altered ATP function of a vesicular stomatitis virus mutant detected by kinetic analysis of the transcriptase using phosphorylated ribavirin. J Gen Virol. 1989 Oct;70(Pt 10):2791–2797. doi: 10.1099/0022-1317-70-10-2791. [DOI] [PubMed] [Google Scholar]
  9. Green T. L., Emerson S. U. Effect of the beta-gamma phosphate bond of ATP on synthesis of leader RNA and mRNAs of vesicular stomatitis virus. J Virol. 1984 Apr;50(1):255–257. doi: 10.1128/jvi.50.1.255-257.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haines D. S., Gillespie D. H. RNA abundance measured by a lysate RNase protection assay. Biotechniques. 1992 May;12(5):736–741. [PubMed] [Google Scholar]
  11. Helfman W. B., Perrault J. Altered ATP utilization by the poIR mutants of vesicular stomatitis virus maps to the N-RNA template. Virology. 1988 Nov;167(1):311–313. doi: 10.1016/0042-6822(88)90087-6. [DOI] [PubMed] [Google Scholar]
  12. Helfman W. B., Perrault J. Redistributive properties of the vesicular stomatitis virus polymerase. Virology. 1989 Aug;171(2):319–330. doi: 10.1016/0042-6822(89)90599-0. [DOI] [PubMed] [Google Scholar]
  13. Horikami S. M., Moyer S. A. Synthesis of leader RNA and editing of the P mRNA during transcription by purified measles virus. J Virol. 1991 Oct;65(10):5342–5347. doi: 10.1128/jvi.65.10.5342-5347.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Isaac C. L., Keene J. D. Transfer RNAs associated with vesicular stomatitis virus. J Gen Virol. 1981 Sep;56(Pt 1):141–151. doi: 10.1099/0022-1317-56-1-141. [DOI] [PubMed] [Google Scholar]
  15. Iverson L. E., Rose J. K. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell. 1981 Feb;23(2):477–484. doi: 10.1016/0092-8674(81)90143-4. [DOI] [PubMed] [Google Scholar]
  16. Kurilla M. G., Keene J. D. The leader RNA of vesicular stomatitis virus is bound by a cellular protein reactive with anti-La lupus antibodies. Cell. 1983 Oct;34(3):837–845. doi: 10.1016/0092-8674(83)90541-x. [DOI] [PubMed] [Google Scholar]
  17. Perrault J., Clinton G. M., McClure M. A. RNP template of vesicular stomatitis virus regulates transcription and replication functions. Cell. 1983 Nov;35(1):175–185. doi: 10.1016/0092-8674(83)90220-9. [DOI] [PubMed] [Google Scholar]
  18. Perrault J., McLear P. W. ATP dependence of vesicular stomatitis virus transcription initiation and modulation by mutation in the nucleocapsid protein. J Virol. 1984 Sep;51(3):635–642. doi: 10.1128/jvi.51.3.635-642.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perrault J., Semler B. L. Internal genome deletions in two distinct classes of defective interfering particles of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6191–6195. doi: 10.1073/pnas.76.12.6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pinney D. F., Emerson S. U. Identification and characterization of a group of discrete initiated oligonucleotides transcribed in vitro from the 3' terminus of the N-gene of vesicular stomatitis virus. J Virol. 1982 Jun;42(3):889–896. doi: 10.1128/jvi.42.3.889-896.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schnell M. J., Buonocore L., Whitt M. A., Rose J. K. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol. 1996 Apr;70(4):2318–2323. doi: 10.1128/jvi.70.4.2318-2323.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Semler B. L., Perrault J., Abelson J., Holland J. J. Sequence of a RNA templated by the 3'-OH RNA terminus of defective interfering particles of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4704–4708. doi: 10.1073/pnas.75.10.4704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sprague J., Condra J. H., Arnheiter H., Lazzarini R. A. Expression of a recombinant DNA gene coding for the vesicular stomatitis virus nucleocapsid protein. J Virol. 1983 Feb;45(2):773–781. doi: 10.1128/jvi.45.2.773-781.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Talib S., Hearst J. E. Initiation of RNA synthesis in vitro by vesicular stomatitis virus: single internal initiation in the presence of aurintricarboxylic acid and vanadyl ribonucleoside complexes. Nucleic Acids Res. 1983 Oct 25;11(20):7031–7042. doi: 10.1093/nar/11.20.7031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Testa D., Chanda P. K., Banerjee A. K. Unique mode of transcription in vitro by Vesicular stomatitis virus. Cell. 1980 Aug;21(1):267–275. doi: 10.1016/0092-8674(80)90134-8. [DOI] [PubMed] [Google Scholar]
  26. Thornton G. B., De B. P., Banerjee A. K. Interaction of L and NS proteins of vesicular stomatitis virus with its template ribonucleoprotein during RNA synthesis in vitro. J Gen Virol. 1984 Mar;65(Pt 3):663–668. doi: 10.1099/0022-1317-65-3-663. [DOI] [PubMed] [Google Scholar]
  27. Vidal S., Kolakofsky D. Modified model for the switch from Sendai virus transcription to replication. J Virol. 1989 May;63(5):1951–1958. doi: 10.1128/jvi.63.5.1951-1958.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams P. M., Williamson K. A., Emerson S. U. Monoclonal antibodies to the NS protein of vesicular stomatitis virus inhibit initiation of transcripts in vitro and dissociate leader RNA from mRNA synthesis. Virology. 1988 Dec;167(2):342–348. [PubMed] [Google Scholar]
  29. Wilusz J., Kurilla M. G., Keene J. D. A host protein (La) binds to a unique species of minus-sense leader RNA during replication of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5827–5831. doi: 10.1073/pnas.80.19.5827. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES