Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Mar;71(3):1931–1937. doi: 10.1128/jvi.71.3.1931-1937.1997

Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1.

C K Ho 1, J L Van Etten 1, S Shuman 1
PMCID: PMC191272  PMID: 9032324

Abstract

We report that Chlorella virus PBCV-1 encodes a 298-amino-acid ATP-dependent DNA ligase. The PBCV-1 enzyme is the smallest member of the covalent nucleotidyl transferase superfamily, which includes the ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes. The specificity of PBCV-1 DNA ligase was investigated by using purified recombinant protein. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km, 75 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. PBCV-1 ligase was unable to ligate across a 2-nucleotide gap and ligated poorly across a 1-nucleotide gap. A native gel mobility shift assay showed that PBCV-1 DNA ligase discriminated between nicked and gapped DNAs at the substrate-binding step. These findings underscore the importance of a properly positioned 3' OH acceptor terminus in substrate recognition and reaction chemistry.

Full Text

The Full Text of this article is available as a PDF (669.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes D. E., Johnston L. H., Kodama K., Tomkinson A. E., Lasko D. D., Lindahl T. Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6679–6683. doi: 10.1073/pnas.87.17.6679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cong P., Shuman S. Covalent catalysis in nucleotidyl transfer. A KTDG motif essential for enzyme-GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases. J Biol Chem. 1993 Apr 5;268(10):7256–7260. [PubMed] [Google Scholar]
  3. Cong P., Shuman S. Mutational analysis of mRNA capping enzyme identifies amino acids involved in GTP binding, enzyme-guanylate formation, and GMP transfer to RNA. Mol Cell Biol. 1995 Nov;15(11):6222–6231. doi: 10.1128/mcb.15.11.6222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fresco L. D., Buratowski S. Active site of the mRNA-capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6624–6628. doi: 10.1073/pnas.91.14.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hammond J. M., Kerr S. M., Smith G. L., Dixon L. K. An African swine fever virus gene with homology to DNA ligases. Nucleic Acids Res. 1992 Jun 11;20(11):2667–2671. doi: 10.1093/nar/20.11.2667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heaphy S., Singh M., Gait M. J. Effect of single amino acid changes in the region of the adenylylation site of T4 RNA ligase. Biochemistry. 1987 Mar 24;26(6):1688–1696. doi: 10.1021/bi00380a030. [DOI] [PubMed] [Google Scholar]
  7. Kletzin A. Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases. Nucleic Acids Res. 1992 Oct 25;20(20):5389–5396. doi: 10.1093/nar/20.20.5389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kodama K., Barnes D. E., Lindahl T. In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I. Nucleic Acids Res. 1991 Nov 25;19(22):6093–6099. doi: 10.1093/nar/19.22.6093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kutish G. F., Li Y., Lu Z., Furuta M., Rock D. L., Van Etten J. L. Analysis of 76 kb of the chlorella virus PBCV-1 330-kb genome: map positions 182 to 258. Virology. 1996 Sep 15;223(2):303–317. doi: 10.1006/viro.1996.0482. [DOI] [PubMed] [Google Scholar]
  10. Lehman I. R. DNA ligase: structure, mechanism, and function. Science. 1974 Nov 29;186(4166):790–797. doi: 10.1126/science.186.4166.790. [DOI] [PubMed] [Google Scholar]
  11. Li Y., Lu Z., Burbank D. E., Kutish G. F., Rock D. L., Van Etten J. L. Analysis of 43 kb of the Chlorella virus PBCV-1 330-kb genome: map positions 45 to 88. Virology. 1995 Sep 10;212(1):134–150. doi: 10.1006/viro.1995.1462. [DOI] [PubMed] [Google Scholar]
  12. Lu Z., Li Y., Que Q., Kutish G. F., Rock D. L., Van Etten J. L. Analysis of 94 kb of the chlorella virus PBCV-1 330-kb genome: map positions 88 to 182. Virology. 1996 Feb 1;216(1):102–123. doi: 10.1006/viro.1996.0038. [DOI] [PubMed] [Google Scholar]
  13. Lu Z., Li Y., Zhang Y., Kutish G. F., Rock D. L., Van Etten J. L. Analysis of 45 kb of DNA located at the left end of the chlorella virus PBCV-1 genome. Virology. 1995 Jan 10;206(1):339–352. doi: 10.1016/s0042-6822(95)80049-2. [DOI] [PubMed] [Google Scholar]
  14. Montecucco A., Lestingi M., Pedrali-Noy G., Spadari S., Ciarrocchi G. Use of ATP, dATP and their alpha-thio derivatives to study DNA ligase adenylation. Biochem J. 1990 Oct 1;271(1):265–268. doi: 10.1042/bj2710265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Niles E. G., Christen L. Identification of the vaccinia virus mRNA guanyltransferase active site lysine. J Biol Chem. 1993 Nov 25;268(33):24986–24989. [PubMed] [Google Scholar]
  16. Raae A. J., Kleppe K. Effect of ATP analogues on T4 polynucleotide ligase. Biochem Biophys Res Commun. 1978 Mar 15;81(1):24–27. doi: 10.1016/0006-291x(78)91625-x. [DOI] [PubMed] [Google Scholar]
  17. Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
  18. Schwer B., Shuman S. Mutational analysis of yeast mRNA capping enzyme. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4328–4332. doi: 10.1073/pnas.91.10.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shuman S., Liu Y., Schwer B. Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12046–12050. doi: 10.1073/pnas.91.25.12046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shuman S., Ru X. M. Mutational analysis of vaccinia DNA ligase defines residues essential for covalent catalysis. Virology. 1995 Aug 1;211(1):73–83. doi: 10.1006/viro.1995.1380. [DOI] [PubMed] [Google Scholar]
  21. Shuman S., Schwer B. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol Microbiol. 1995 Aug;17(3):405–410. doi: 10.1111/j.1365-2958.1995.mmi_17030405.x. [DOI] [PubMed] [Google Scholar]
  22. Shuman S. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry. 1995 Dec 12;34(49):16138–16147. doi: 10.1021/bi00049a029. [DOI] [PubMed] [Google Scholar]
  23. Smith G. L., Chan Y. S., Kerr S. M. Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. Nucleic Acids Res. 1989 Nov 25;17(22):9051–9062. doi: 10.1093/nar/17.22.9051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Subramanya H. S., Doherty A. J., Ashford S. R., Wigley D. B. Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell. 1996 May 17;85(4):607–615. doi: 10.1016/s0092-8674(00)81260-x. [DOI] [PubMed] [Google Scholar]
  25. Tomkinson A. E., Tappe N. J., Friedberg E. C. DNA ligase I from Saccharomyces cerevisiae: physical and biochemical characterization of the CDC9 gene product. Biochemistry. 1992 Dec 1;31(47):11762–11771. doi: 10.1021/bi00162a013. [DOI] [PubMed] [Google Scholar]
  26. Tomkinson A. E., Totty N. F., Ginsburg M., Lindahl T. Location of the active site for enzyme-adenylate formation in DNA ligases. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):400–404. doi: 10.1073/pnas.88.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Etten J. L., Lane L. C., Meints R. H. Viruses and viruslike particles of eukaryotic algae. Microbiol Rev. 1991 Dec;55(4):586–620. doi: 10.1128/mr.55.4.586-620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang Y. C., Burkhart W. A., Mackey Z. B., Moyer M. B., Ramos W., Husain I., Chen J., Besterman J. M., Tomkinson A. E. Mammalian DNA ligase II is highly homologous with vaccinia DNA ligase. Identification of the DNA ligase II active site for enzyme-adenylate formation. J Biol Chem. 1994 Dec 16;269(50):31923–31928. [PubMed] [Google Scholar]
  29. Wei Y. F., Robins P., Carter K., Caldecott K., Pappin D. J., Yu G. L., Wang R. P., Shell B. K., Nash R. A., Schär P. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol. 1995 Jun;15(6):3206–3216. doi: 10.1128/mcb.15.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES