Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Mar;71(3):2072–2082. doi: 10.1128/jvi.71.3.2072-2082.1997

Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment.

H Granzow 1, F Weiland 1, A Jöns 1, B G Klupp 1, A Karger 1, T C Mettenleiter 1
PMCID: PMC191296  PMID: 9032339

Abstract

We reinvestigated major steps in the replicative cycle of pseudorabies virus (PrV) by electron microscopy of infected cultured cells. Virions attached to the cell surface were found in two distinct stages, with a distance of 12 to 14 nm or 6 to 8 nm between virion envelope and cell surface, respectively. After fusion of virion envelope and cell membrane, immunogold labeling using a monoclonal antibody against the envelope glycoprotein gE demonstrated a rapid drift of gE from the fusion site, indicating significant lateral movement of viral glycoproteins during or immediately after the fusion event. Naked nucleocapsids in the cytoplasm frequently appeared close to microtubules prior to transport to nuclear pores. At the nuclear pore, nucleocapsids invariably were oriented with one vertex pointing to the central granulum at a distance of about 40 nm and viral DNA appeared to be released via the vertex region into the nucleoplasm. Intranuclear maturation followed the typical herpesvirus nucleocapsid morphogenesis pathway. Regarding egress, our observations indicate that primary envelopment of nucleocapsids occurred at the inner leaflet of the nuclear membrane by budding into the perinuclear cisterna. This nuclear membrane-derived envelope exhibited a smooth surface which contrasts the envelope obtained by putative reenvelopment at tubular vesicles in the Golgi area which is characterized by distinct surface projections. Loss of the primary envelope and release of the nucleocapsid into the cytoplasm appeared to occur by fusion of envelope and outer leaflet of the nuclear membrane. Nucleocapsids were also found engulfed by both lamella of the nuclear membrane. This vesiculation process released nucleocapsids surrounded by two membranes into the cytoplasm. Our data also indicate that fusion between the two membranes then leads to release of naked nucleocapsids in the Golgi area. Egress of virions appeared to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. Our data thus support biochemical data and mutant virus studies of (i) two steps of attachment, (ii) the involvement of microtubules in the transport of nucleocapsids to the nuclear pore, and (iii) secondary envelopment in the trans-Golgi area in PrV infection.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babiss L. E., Luftig R. B., Weatherbee J. A., Weihing R. R., Ray U. R., Fields B. N. Reovirus serotypes 1 and 3 differ in their in vitro association with microtubules. J Virol. 1979 Jun;30(3):863–874. doi: 10.1128/jvi.30.3.863-874.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baskerville A. Ultrastructural changes in the pulmonary airways of pigs infected with a strain of Aujesky's disease virus. Res Vet Sci. 1972 Mar;13(2):127–132. [PubMed] [Google Scholar]
  3. Batterson W., Furlong D., Roizman B. Molecular genetics of herpes simplex virus. VIII. further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol. 1983 Jan;45(1):397–407. doi: 10.1128/jvi.45.1.397-407.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campadelli-Fiume G., Arsenakis M., Farabegoli F., Roizman B. Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. J Virol. 1988 Jan;62(1):159–167. doi: 10.1128/jvi.62.1.159-167.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campadelli-Fiume G., Farabegoli F., Di Gaeta S., Roizman B. Origin of unenveloped capsids in the cytoplasm of cells infected with herpes simplex virus 1. J Virol. 1991 Mar;65(3):1589–1595. doi: 10.1128/jvi.65.3.1589-1595.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Card J. P., Rinaman L., Lynn R. B., Lee B. H., Meade R. P., Miselis R. R., Enquist L. W. Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis. J Neurosci. 1993 Jun;13(6):2515–2539. doi: 10.1523/JNEUROSCI.13-06-02515.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dales S., Chardonnet Y. Early events in the interaction of adenoviruses with HeLa cells. IV. Association with microtubules and the nuclear pore complex during vectorial movement of the inoculum. Virology. 1973 Dec;56(2):465–483. doi: 10.1016/0042-6822(73)90050-0. [DOI] [PubMed] [Google Scholar]
  8. Darlington R. W., Moss L. H., 3rd Herpesvirus envelopment. J Virol. 1968 Jan;2(1):48–55. doi: 10.1128/jvi.2.1.48-55.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Lazzaro C., Campadelli-Fiume G., Torrisi M. R. Intermediate forms of glycoconjugates are present in the envelope of herpes simplex virions during their transport along the exocytic pathway. Virology. 1995 Dec 20;214(2):619–623. doi: 10.1006/viro.1995.0073. [DOI] [PubMed] [Google Scholar]
  10. Fuchs W., Klupp B. G., Granzow H., Rziha H. J., Mettenleiter T. C. Identification and characterization of the pseudorabies virus UL3.5 protein, which is involved in virus egress. J Virol. 1996 Jun;70(6):3517–3527. doi: 10.1128/jvi.70.6.3517-3527.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuller A. O., Lee W. C. Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. J Virol. 1992 Aug;66(8):5002–5012. doi: 10.1128/jvi.66.8.5002-5012.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuller A. O., Spear P. G. Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5454–5458. doi: 10.1073/pnas.84.15.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gershon A. A., Sherman D. L., Zhu Z., Gabel C. A., Ambron R. T., Gershon M. D. Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. J Virol. 1994 Oct;68(10):6372–6390. doi: 10.1128/jvi.68.10.6372-6390.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibson W., Roizman B. Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol. 1972 Nov;10(5):1044–1052. doi: 10.1128/jvi.10.5.1044-1052.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Granzow H., Schirrmeier H., Beyer J., Lange E. Morphologische Studien bei Virusinfektionen des Darmtraktes--Virusreplikation und Zytopathologie in Zellkulturen und Enterozyten beim Ferkel. 1. Mitteilung: Ultrastruktur des nichtinfizierten Darmepithels und bei Rotavirusinfektion. Arch Exp Veterinarmed. 1988 Jul;42(4):558–570. [PubMed] [Google Scholar]
  16. HUANG A. S., WAGNER R. R. PENETRATION OF HERPES SIMPLEX VIRUS INTO HUMAN EPIDERMOID CELLS. Proc Soc Exp Biol Med. 1964 Aug-Sep;116:863–869. doi: 10.3181/00379727-116-29392. [DOI] [PubMed] [Google Scholar]
  17. Harson R., Grose C. Egress of varicella-zoster virus from the melanoma cell: a tropism for the melanocyte. J Virol. 1995 Aug;69(8):4994–5010. doi: 10.1128/jvi.69.8.4994-5010.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson D. C., Spear P. G. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J Virol. 1982 Sep;43(3):1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jones F., Grose C. Role of cytoplasmic vacuoles in varicella-zoster virus glycoprotein trafficking and virion envelopment. J Virol. 1988 Aug;62(8):2701–2711. doi: 10.1128/jvi.62.8.2701-2711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KAPLAN A. S., VATTER A. E. A comparison of herpes simplex and pseudorabies viruses. Virology. 1959 Apr;7(4):394–407. doi: 10.1016/0042-6822(59)90068-6. [DOI] [PubMed] [Google Scholar]
  21. Karger A., Mettenleiter T. C. Glycoproteins gIII and gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Virology. 1993 Jun;194(2):654–664. doi: 10.1006/viro.1993.1305. [DOI] [PubMed] [Google Scholar]
  22. Klupp B. G., Visser N., Mettenleiter T. C. Identification and characterization of pseudorabies virus glycoprotein H. J Virol. 1992 May;66(5):3048–3055. doi: 10.1128/jvi.66.5.3048-3055.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kristensson K., Lycke E., Röyttä M., Svennerholm B., Vahlne A. Neuritic transport of herpes simplex virus in rat sensory neurons in vitro. Effects of substances interacting with microtubular function and axonal flow [nocodazole, taxol and erythro-9-3-(2-hydroxynonyl)adenine]. J Gen Virol. 1986 Sep;67(Pt 9):2023–2028. doi: 10.1099/0022-1317-67-9-2023. [DOI] [PubMed] [Google Scholar]
  24. Liu F. Y., Roizman B. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol. 1991 Oct;65(10):5149–5156. doi: 10.1128/jvi.65.10.5149-5156.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu F., Roizman B. Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J Virol. 1993 Mar;67(3):1300–1309. doi: 10.1128/jvi.67.3.1300-1309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Luftig R. B. Does the cytoskeleton play a significant role in animal virus replication? J Theor Biol. 1982 Nov 7;99(1):173–191. doi: 10.1016/0022-5193(82)90397-6. [DOI] [PubMed] [Google Scholar]
  27. McCracken R. M., Clarke J. K. A thin-section study of the morphogenesis of Aujeszky's disease virus in synchronously infected cell cultures. Arch Gesamte Virusforsch. 1971;34(3):189–201. doi: 10.1007/BF01242992. [DOI] [PubMed] [Google Scholar]
  28. McCracken R. M., Dow C. An electron microscopic study of Aujeszky's disease. Acta Neuropathol. 1973;25(3):207–219. doi: 10.1007/BF00685200. [DOI] [PubMed] [Google Scholar]
  29. McCracken R. M., McFerran J. B., Dow C. The neural spread of pseudorabies virus in calves. J Gen Virol. 1973 Jul;20(1):17–28. doi: 10.1099/0022-1317-20-1-17. [DOI] [PubMed] [Google Scholar]
  30. McGeoch D. J., Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol. 1994 Apr 22;238(1):9–22. doi: 10.1006/jmbi.1994.1264. [DOI] [PubMed] [Google Scholar]
  31. Mettenleiter T. C. Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology. 1989 Aug;171(2):623–625. doi: 10.1016/0042-6822(89)90635-1. [DOI] [PubMed] [Google Scholar]
  32. Morgan C., Rose H. M., Mednis B. Electron microscopy of herpes simplex virus. I. Entry. J Virol. 1968 May;2(5):507–516. doi: 10.1128/jvi.2.5.507-516.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Newcomb W. W., Brown J. C. Induced extrusion of DNA from the capsid of herpes simplex virus type 1. J Virol. 1994 Jan;68(1):433–440. doi: 10.1128/jvi.68.1.433-440.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Newcomb W. W., Brown J. C. Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol. 1991 Feb;65(2):613–620. doi: 10.1128/jvi.65.2.613-620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nii S. Electron microscopic study on the development of herpesviruses. J Electron Microsc (Tokyo) 1992 Dec;41(6):414–423. [PubMed] [Google Scholar]
  36. Penfold M. E., Armati P., Cunningham A. L. Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6529–6533. doi: 10.1073/pnas.91.14.6529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pol J. M., Wagenaar F., Gielkens A. Morphogenesis of three pseudorabies virus strains in porcine nasal mucosa. Intervirology. 1991;32(6):327–337. doi: 10.1159/000150217. [DOI] [PubMed] [Google Scholar]
  38. Radsak K., Eickmann M., Mockenhaupt T., Bogner E., Kern H., Eis-Hübinger A., Reschke M. Retrieval of human cytomegalovirus glycoprotein B from the infected cell surface for virus envelopment. Arch Virol. 1996;141(3-4):557–572. doi: 10.1007/BF01718317. [DOI] [PubMed] [Google Scholar]
  39. Sawitzky D., Hampl H., Habermehl K. O. Entry of pseudorabies virus into CHO cells is blocked at the level of penetration. Arch Virol. 1990;115(3-4):309–316. doi: 10.1007/BF01310539. [DOI] [PubMed] [Google Scholar]
  40. Stackpole C. W. Herpes-type virus of the frog renal adenocarcinoma. I. Virus development in tumor transplants maintained at low temperature. J Virol. 1969 Jul;4(1):75–93. doi: 10.1128/jvi.4.1.75-93.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol. 1994 May;75(Pt 5):1101–1113. doi: 10.1099/0022-1317-75-5-1101. [DOI] [PubMed] [Google Scholar]
  42. Thomsen D. R., Newcomb W. W., Brown J. C., Homa F. L. Assembly of the herpes simplex virus capsid: requirement for the carboxyl-terminal twenty-five amino acids of the proteins encoded by the UL26 and UL26.5 genes. J Virol. 1995 Jun;69(6):3690–3703. doi: 10.1128/jvi.69.6.3690-3703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Topilko A., Michelson S. Hyperimmediate entry of human cytomegalovirus virions and dense bodies into human fibroblasts. Res Virol. 1994 Mar-Apr;145(2):75–82. doi: 10.1016/s0923-2516(07)80009-4. [DOI] [PubMed] [Google Scholar]
  44. Torrisi M. R., Di Lazzaro C., Pavan A., Pereira L., Campadelli-Fiume G. Herpes simplex virus envelopment and maturation studied by fracture label. J Virol. 1992 Jan;66(1):554–561. doi: 10.1128/jvi.66.1.554-561.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vlazny D. A., Kwong A., Frenkel N. Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1423–1427. doi: 10.1073/pnas.79.5.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weatherbee J. A., Luftig R. B., Weihing R. R. Binding of adenovirus to microtubules. II. Depletion of high-molecular-weight microtubule-associated protein content reduces specificity of in vitro binding. J Virol. 1977 Feb;21(2):732–742. doi: 10.1128/jvi.21.2.732-742.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wehland J., Willingham M. C., Sandoval I. V. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo. J Cell Biol. 1983 Nov;97(5 Pt 1):1467–1475. doi: 10.1083/jcb.97.5.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weiland F., Keil G. M., Reddehase M. J., Koszinowski U. H. Studies on the morphogenesis of murine cytomegalovirus. Intervirology. 1986;26(4):192–201. doi: 10.1159/000149701. [DOI] [PubMed] [Google Scholar]
  49. Whealy M. E., Card J. P., Meade R. P., Robbins A. K., Enquist L. W. Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J Virol. 1991 Mar;65(3):1066–1081. doi: 10.1128/jvi.65.3.1066-1081.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wittels M., Spear P. G. Penetration of cells by herpes simplex virus does not require a low pH-dependent endocytic pathway. Virus Res. 1991 Mar;18(2-3):271–290. doi: 10.1016/0168-1702(91)90024-p. [DOI] [PubMed] [Google Scholar]
  51. Zhu Z., Gershon M. D., Hao Y., Ambron R. T., Gabel C. A., Gershon A. A. Envelopment of varicella-zoster virus: targeting of viral glycoproteins to the trans-Golgi network. J Virol. 1995 Dec;69(12):7951–7959. doi: 10.1128/jvi.69.12.7951-7959.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES