Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Mar;71(3):2146–2156. doi: 10.1128/jvi.71.3.2146-2156.1997

Two Microplitis demolitor polydnavirus mRNAs expressed in hemocytes of Pseudoplusia includens contain a common cysteine-rich domain.

M R Strand 1, R A Witherell 1, D Trudeau 1
PMCID: PMC191318  PMID: 9032348

Abstract

Microplitis demolitor is a polydnavirus-carrying wasp that parasitizes the larval stage of Pseudoplusia includens. A previous study indicated that M. demolitor polydnavirus (MdPDV) infects primarily hemocytes in parasitized hosts. Thereafter, several alterations that compromise the immune response of P. includens toward the developing parasitoid occur in hemocytes. In this study, we identified two MdPDV mRNAs (1.0 and 1.5 kb) expressed in P. includens hemocytes that have homology to the viral genomic clone pMd-2. Corresponding 1.0- and 1.5-kb cDNA clones (MdPi455 and MdPi59) were isolated from an MdPDV-infected hemocyte cDNA library. Nucleotide sequence analysis of the cDNA clones confirmed that the 1.5- and 1.0-kb mRNAs have significant regions of homology. Sequence alignment revealed that the gene, OMd1.0, encoding the 1.0-kb mRNA is present in pMd-2. This gene contains two introns and three exons that agree with the sequence for MdPi455. In contrast, the 1.5-kb mRNA is likely encoded by a related gene located on the same MdPDV genomic DNA as is OMd1.0. The predicted peptide sequences for the 1.0- and 1.5-kb transcripts contain a cysteine-rich region at their 5' ends that have some similarity with epidermal growth factor-like motifs. Hybridization studies revealed that both mRNAs are expressed in granular cells and plasmatocytes, the primary classes of hemocytes involved in defense against M. demolitor and other parasites.

Full Text

The Full Text of this article is available as a PDF (993.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ancsin J. B., Kisilevsky R. Laminin interactions important for basement membrane assembly are promoted by zinc and implicate laminin zinc finger-like sequences. J Biol Chem. 1996 Mar 22;271(12):6845–6851. doi: 10.1074/jbc.271.12.6845. [DOI] [PubMed] [Google Scholar]
  2. Asgari S., Hellers M., Schmidt O. Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J Gen Virol. 1996 Oct;77(Pt 10):2653–2662. doi: 10.1099/0022-1317-77-10-2653. [DOI] [PubMed] [Google Scholar]
  3. Blissard G. W., Theilmann D. A., Summers M. D. Segment W of Campoletis sonorensis virus: expression, gene products, and organization. Virology. 1989 Mar;169(1):78–89. doi: 10.1016/0042-6822(89)90043-3. [DOI] [PubMed] [Google Scholar]
  4. Chen N., Upcroft J. A., Upcroft P. A new cysteine-rich protein-encoding gene family in Giardia duodenalis. Gene. 1996 Feb 22;169(1):33–38. doi: 10.1016/0378-1119(95)00759-8. [DOI] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dib-Hajj S. D., Webb B. A., Summers M. D. Structure and evolutionary implications of a "cysteine-rich" Campoletis sonorensis polydnavirus gene family. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3765–3769. doi: 10.1073/pnas.90.8.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dittman W. A., Kumada T., Sadler J. E., Majerus P. W. The structure and function of mouse thrombomodulin. Phorbol myristate acetate stimulates degradation and synthesis of thrombomodulin without affecting mRNA levels in hemangioma cells. J Biol Chem. 1988 Oct 25;263(30):15815–15822. [PubMed] [Google Scholar]
  8. Fabregat I., Sánchez A., Alvarez A. M., Nakamura T., Benito M. Epidermal growth factor, but not hepatocyte growth factor, suppresses the apoptosis induced by transforming growth factor-beta in fetal hepatocytes in primary culture. FEBS Lett. 1996 Apr 8;384(1):14–18. doi: 10.1016/0014-5793(96)00266-9. [DOI] [PubMed] [Google Scholar]
  9. Fleming J. A. Polydnaviruses: mutualists and pathogens. Annu Rev Entomol. 1992;37:401–425. doi: 10.1146/annurev.en.37.010192.002153. [DOI] [PubMed] [Google Scholar]
  10. Gray A., Dull T. J., Ullrich A. Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature. 1983 Jun 23;303(5919):722–725. doi: 10.1038/303722a0. [DOI] [PubMed] [Google Scholar]
  11. Harwood S. H., Grosovsky A. J., Cowles E. A., Davis J. W., Beckage N. E. An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology. 1994 Dec;205(2):381–392. doi: 10.1006/viro.1994.1659. [DOI] [PubMed] [Google Scholar]
  12. Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K. K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988 Dec 20;7(13):4119–4127. doi: 10.1002/j.1460-2075.1988.tb03306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  14. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li X., Webb B. A. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J Virol. 1994 Nov;68(11):7482–7489. doi: 10.1128/jvi.68.11.7482-7489.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mecham R. P. Laminin receptors. Annu Rev Cell Biol. 1991;7:71–91. doi: 10.1146/annurev.cb.07.110191.000443. [DOI] [PubMed] [Google Scholar]
  17. Pech L. L., Strand M. R. Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci. 1996 Aug;109(Pt 8):2053–2060. doi: 10.1242/jcs.109.8.2053. [DOI] [PubMed] [Google Scholar]
  18. Pech L. L., Trudeau D., Strand M. R. Separation and behavior in vitro of hemocytes from the moth, Pseudoplusia includens. Cell Tissue Res. 1994 Jul;277(1):159–167. doi: 10.1007/BF00303092. [DOI] [PubMed] [Google Scholar]
  19. Skinner D. Z. A PCR-based method of identifying species-specific repeated DNAs. Biotechniques. 1992 Aug;13(2):210–214. [PubMed] [Google Scholar]
  20. Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
  21. Stoltz D. B., Krell P., Summers M. D., Vinson S. B. Polydnaviridae - a proposed family of insect viruses with segmented, double-stranded, circular DNA genomes. Intervirology. 1984;21(1):1–4. doi: 10.1159/000149497. [DOI] [PubMed] [Google Scholar]
  22. Strand M. R., McKenzie D. I., Grassl V., Dover B. A., Aiken J. M. Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens. J Gen Virol. 1992 Jul;73(Pt 7):1627–1635. doi: 10.1099/0022-1317-73-7-1627. [DOI] [PubMed] [Google Scholar]
  23. Strand M. R. Microplitis demolitor polydnavirus infects and expresses in specific morphotypes of Pseudoplusia includens haemocytes. J Gen Virol. 1994 Nov;75(Pt 11):3007–3020. doi: 10.1099/0022-1317-75-11-3007. [DOI] [PubMed] [Google Scholar]
  24. Strand M. R., Pech L. L. Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol. 1995;40:31–56. doi: 10.1146/annurev.en.40.010195.000335. [DOI] [PubMed] [Google Scholar]
  25. Strand M. R., Pech L. L. Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens. J Gen Virol. 1995 Feb;76(Pt 2):283–291. doi: 10.1099/0022-1317-76-2-283. [DOI] [PubMed] [Google Scholar]
  26. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  27. Tepass U., Theres C., Knust E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell. 1990 Jun 1;61(5):787–799. doi: 10.1016/0092-8674(90)90189-l. [DOI] [PubMed] [Google Scholar]
  28. Theilmann D. A., Summers M. D. Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Campoletis sonorensis and Heliothis virescens. Virology. 1988 Dec;167(2):329–341. [PubMed] [Google Scholar]
  29. Toyoda H., Komurasaki T., Ikeda Y., Yoshimoto M., Morimoto S. Molecular cloning of mouse epiregulin, a novel epidermal growth factor-related protein, expressed in the early stage of development. FEBS Lett. 1995 Dec 27;377(3):403–407. doi: 10.1016/0014-5793(95)01403-9. [DOI] [PubMed] [Google Scholar]
  30. Webb B. A., Summers M. D. Venom and viral expression products of the endoparasitic wasp Campoletis sonorensis share epitopes and related sequences. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4961–4965. doi: 10.1073/pnas.87.13.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu S. M., Stafford D. W., Ware J. Deduced amino acid sequence of mouse blood-coagulation factor IX. Gene. 1990 Feb 14;86(2):275–278. doi: 10.1016/0378-1119(90)90290-8. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto T., Nakamura Y., Nishide J., Emi M., Ogawa M., Mori T., Matsubara K. Molecular cloning and nucleotide sequence of human pancreatic secretory trypsin inhibitor (PSTI) cDNA. Biochem Biophys Res Commun. 1985 Oct 30;132(2):605–612. doi: 10.1016/0006-291x(85)91176-3. [DOI] [PubMed] [Google Scholar]
  33. Yochem J., Weston K., Greenwald I. The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature. 1988 Oct 6;335(6190):547–550. doi: 10.1038/335547a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES