Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Mar;71(3):2310–2319. doi: 10.1128/jvi.71.3.2310-2319.1997

In vitro genetic selection analysis of alfalfa mosaic virus coat protein binding to 3'-terminal AUGC repeats in the viral RNAs.

F Houser-Scott 1, P Ansel-McKinney 1, J M Cai 1, L Gehrke 1
PMCID: PMC191340  PMID: 9032367

Abstract

The coat proteins of alfalfa mosaic virus (AMV) and the related ilarviruses bind specifically to the 3' untranslated regions of the viral RNAs, which contain conserved repeats of the tetranucleotide sequence AUGC. The purpose of this study was to develop a more detailed understanding of RNA sequence and/or structural determinants required for coat protein binding by characterizing the role of the AUGC repeats. Starting with a complex pool of 39-nucleotide RNA molecules containing random substitutions in the AUGC repeats, in vitro genetic selection was used to identify RNAs that bound coat protein. After six iterative rounds of selection, amplification, and reselection, 25% of the RNAs selected from the randomized pool were wild type; that is, they contained all four AUGC sequences. Among the 31 clones analyzed, AUGC was clearly the preferred selected sequence at the four repeats, but some nucleotide sequence variability was observed at AUGC(865-868) if the other three AUGC repeats were present. Variant RNAs that bound coat protein with affinities equal to or greater than that of the wild-type molecule were not selected. To extend the in vitro selection results, RNAs containing specific nucleotide substitutions were transcribed in vitro and tested in coat protein and peptide binding assays. The data strongly suggest that the AUGC repeats provide sequence-specific determinants and contribute to a structural platform for specific coat protein binding. Coat protein may function in maintaining the 3' ends of the genomic RNAs during replication by stabilizing an RNA structure that defines the 3' terminus as the initiation site for minus-strand synthesis.

Full Text

The Full Text of this article is available as a PDF (344.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansel-McKinney P., Scott S. W., Swanson M., Ge X., Gehrke L. A plant viral coat protein RNA binding consensus sequence contains a crucial arginine. EMBO J. 1996 Sep 16;15(18):5077–5084. [PMC free article] [PubMed] [Google Scholar]
  2. Baer M. L., Houser F., Loesch-Fries L. S., Gehrke L. Specific RNA binding by amino-terminal peptides of alfalfa mosaic virus coat protein. EMBO J. 1994 Feb 1;13(3):727–735. doi: 10.1002/j.1460-2075.1994.tb06312.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartel D. P., Zapp M. L., Green M. R., Szostak J. W. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell. 1991 Nov 1;67(3):529–536. doi: 10.1016/0092-8674(91)90527-6. [DOI] [PubMed] [Google Scholar]
  4. Calnan B. J., Biancalana S., Hudson D., Frankel A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991 Feb;5(2):201–210. doi: 10.1101/gad.5.2.201. [DOI] [PubMed] [Google Scholar]
  5. Cornelissen B. J., Janssen H., Zuidema D., Bol J. F. Complete nucleotide sequence of tobacco streak virus RNA 3. Nucleic Acids Res. 1984 Mar 12;12(5):2427–2437. doi: 10.1093/nar/12.5.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Graaff M., Man in't Veld M. R., Jaspars E. M. In vitro evidence that the coat protein of alfalfa mosaic virus plays a direct role in the regulation of plus and minus RNA synthesis: implications for the life cycle of alfalfa mosaic virus. Virology. 1995 Apr 20;208(2):583–589. doi: 10.1006/viro.1995.1189. [DOI] [PubMed] [Google Scholar]
  7. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  8. Esteban R., Fujimura T., Wickner R. B. Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J. 1989 Mar;8(3):947–954. doi: 10.1002/j.1460-2075.1989.tb03456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujimura T., Wickner R. B. Interaction of two cis sites with the RNA replicase of the yeast L-A virus. J Biol Chem. 1992 Feb 5;267(4):2708–2713. [PubMed] [Google Scholar]
  10. Gonsalves D., Garnsey S. M. Infectivity of heterologous RNA-protein mixtures from alfalfa mosaic, citrus leaf rugose, citrus variegation, and tobacco streak viruses. Virology. 1975 Oct;67(2):319–326. doi: 10.1016/0042-6822(75)90433-x. [DOI] [PubMed] [Google Scholar]
  11. Gonsalves D., Garnsey S. M. Infectivity of the multiple nucleoprotein and RNA components of citrus leaf rugose virus. Virology. 1974 Oct;61(2):343–353. doi: 10.1016/0042-6822(74)90272-4. [DOI] [PubMed] [Google Scholar]
  12. Haenni A. L., Joshi S., Chapeville F. tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol. 1982;27:85–104. doi: 10.1016/s0079-6603(08)60598-x. [DOI] [PubMed] [Google Scholar]
  13. Hall T. C. Transfer RNA-like structures in viral genomes. Int Rev Cytol. 1979;60:1–26. doi: 10.1016/s0074-7696(08)61257-7. [DOI] [PubMed] [Google Scholar]
  14. Houser-Scott F., Baer M. L., Liem K. F., Jr, Cai J. M., Gehrke L. Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4. J Virol. 1994 Apr;68(4):2194–2205. doi: 10.1128/jvi.68.4.2194-2205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houwing C. J., Jaspars E. M. Coat protein binds to the 3'-terminal part of RNA 4 of alfalfa mosaic virus. Biochemistry. 1978 Jul 11;17(14):2927–2933. doi: 10.1021/bi00607a035. [DOI] [PubMed] [Google Scholar]
  16. Irvine D., Tuerk C., Gold L. SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol. 1991 Dec 5;222(3):739–761. doi: 10.1016/0022-2836(91)90509-5. [DOI] [PubMed] [Google Scholar]
  17. Kaper J. M. Arrangement and identification of simple isometric viruses according to their dominating stabilizing interactions. Virology. 1973 Sep;55(1):299–304. doi: 10.1016/s0042-6822(73)81035-9. [DOI] [PubMed] [Google Scholar]
  18. Koper-Zwarthoff E. C., Bol J. F. Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus. Nucleic Acids Res. 1980 Aug 11;8(15):3307–3318. doi: 10.1093/nar/8.15.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kruseman J., Kraal B., Jaspars E. M., Bol J. F., Brederode F. T., Veldstra H. Molecular weight of the coat protein of alfalfa mosaic virus. Biochemistry. 1971 Feb 2;10(3):447–455. doi: 10.1021/bi00779a015. [DOI] [PubMed] [Google Scholar]
  20. Kuhn R. J., Hong Z., Strauss J. H. Mutagenesis of the 3' nontranslated region of Sindbis virus RNA. J Virol. 1990 Apr;64(4):1465–1476. doi: 10.1128/jvi.64.4.1465-1476.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller W. A., Bujarski J. J., Dreher T. W., Hall T. C. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. J Mol Biol. 1986 Feb 20;187(4):537–546. doi: 10.1016/0022-2836(86)90332-3. [DOI] [PubMed] [Google Scholar]
  22. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  24. Mindich L., Qiao X., Onodera S., Gottlieb P., Strassman J. Heterologous recombination in the double-stranded RNA bacteriophage phi 6. J Virol. 1992 May;66(5):2605–2610. doi: 10.1128/jvi.66.5.2605-2610.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neeleman L., Van der Vossen E. A., Bol J. F. Infection of tobacco with alfalfa mosaic virus cDNAs sheds light on the early function of the coat protein. Virology. 1993 Oct;196(2):883–887. doi: 10.1006/viro.1993.1551. [DOI] [PubMed] [Google Scholar]
  26. Ou J. H., Trent D. W., Strauss J. H. The 3'-non-coding regions of alphavirus RNAs contain repeating sequences. J Mol Biol. 1982 Apr 25;156(4):719–730. doi: 10.1016/0022-2836(82)90138-3. [DOI] [PubMed] [Google Scholar]
  27. Pleij C. W., Rietveld K., Bosch L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 1985 Mar 11;13(5):1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quadt R., Rosdorff H. J., Hunt T. W., Jaspars E. M. Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology. 1991 May;182(1):309–315. doi: 10.1016/0042-6822(91)90674-z. [DOI] [PubMed] [Google Scholar]
  29. Quigley G. J., Gehrke L., Roth D. A., Auron P. E. Computer-aided nucleic acid secondary structure modeling incorporating enzymatic digestion data. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):347–366. doi: 10.1093/nar/12.1part1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reusken C. B., Bol J. F. Structural elements of the 3'-terminal coat protein binding site in alfalfa mosaic virus RNAs. Nucleic Acids Res. 1996 Jul 15;24(14):2660–2665. doi: 10.1093/nar/24.14.2660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reusken C. B., Neeleman L., Bol J. F. The 3'-untranslated region of alfalfa mosaic virus RNA 3 contains at least two independent binding sites for viral coat protein. Nucleic Acids Res. 1994 Apr 25;22(8):1346–1353. doi: 10.1093/nar/22.8.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schimmel P. RNA pseudoknots that interact with components of the translation apparatus. Cell. 1989 Jul 14;58(1):9–12. doi: 10.1016/0092-8674(89)90395-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schneider D., Tuerk C., Gold L. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J Mol Biol. 1992 Dec 5;228(3):862–869. doi: 10.1016/0022-2836(92)90870-p. [DOI] [PubMed] [Google Scholar]
  34. Scott S. W., Ge X. The complete nucleotide sequence of RNA 3 of citrus leaf rugose and citrus variegation ilarviruses. J Gen Virol. 1995 Apr;76(Pt 4):957–963. doi: 10.1099/0022-1317-76-4-957. [DOI] [PubMed] [Google Scholar]
  35. Taschner P. E., van der Kuyl A. C., Neeleman L., Bol J. F. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology. 1991 Apr;181(2):445–450. doi: 10.1016/0042-6822(91)90876-d. [DOI] [PubMed] [Google Scholar]
  36. Tuerk C., Eddy S., Parma D., Gold L. Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. J Mol Biol. 1990 Jun 20;213(4):749–761. doi: 10.1016/S0022-2836(05)80261-X. [DOI] [PubMed] [Google Scholar]
  37. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  38. Watson J. D. Origin of concatemeric T7 DNA. Nat New Biol. 1972 Oct 18;239(94):197–201. doi: 10.1038/newbio239197a0. [DOI] [PubMed] [Google Scholar]
  39. Weinberger J., Baltimore D., Sharp P. A. Distinct factors bind to apparently homologous sequences in the immunoglobulin heavy-chain enhancer. 1986 Aug 28-Sep 3Nature. 322(6082):846–848. doi: 10.1038/322846a0. [DOI] [PubMed] [Google Scholar]
  40. Weiner A. M., Maizels N. tRNA-like structures tag the 3' ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7383–7387. doi: 10.1073/pnas.84.21.7383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yusibov V. M., Loesch-Fries L. S. N-terminal basic amino acids of alfalfa mosaic virus coat protein involved in the initiation of infection. Virology. 1995 Apr 1;208(1):405–407. doi: 10.1006/viro.1995.1168. [DOI] [PubMed] [Google Scholar]
  42. Zuidema D., Bierhuizen M. F., Cornelissen B. J., Bol J. F., Jaspars E. M. Coat protein binding sites on RNA 1 of alfalfa mosaic virus. Virology. 1983 Mar;125(2):361–369. doi: 10.1016/0042-6822(83)90208-8. [DOI] [PubMed] [Google Scholar]
  43. van Beynum G. M., de Graaf J. M., Castel A., Kraal B., Bosch L. Structural studies on the coat protein of alfalfa mosaic virus. The complete primary structure. Eur J Biochem. 1977 Jan 3;72(1):63–78. doi: 10.1111/j.1432-1033.1977.tb11225.x. [DOI] [PubMed] [Google Scholar]
  44. van Vloten-Doting L. Coat protein is required for infectivity of tobacco streak virus: biological equivalence of the coat proteins of tobacco streak and alfalfa mosaic viruses. Virology. 1975 May;65(1):215–225. doi: 10.1016/0042-6822(75)90022-7. [DOI] [PubMed] [Google Scholar]
  45. van der Kuyl A. C., Langereis K., Houwing C. J., Jaspars E. M., Bol J. F. cis-acting elements involved in replication of alfalfa mosaic virus RNAs in vitro. Virology. 1990 Jun;176(2):346–354. doi: 10.1016/0042-6822(90)90004-b. [DOI] [PubMed] [Google Scholar]
  46. van der Vossen E. A., Neeleman L., Bol J. F. Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology. 1994 Aug 1;202(2):891–903. doi: 10.1006/viro.1994.1411. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES