Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Mar;71(3):2363–2370. doi: 10.1128/jvi.71.3.2363-2370.1997

An RNA tertiary structure in the 3' untranslated region of enteroviruses is necessary for efficient replication.

M H Mirmomeni 1, P J Hughes 1, G Stanway 1
PMCID: PMC191346  PMID: 9032373

Abstract

RNA tertiary structures, such as pseudoknots, are known to be biologically significant in a number of virus systems. The 3' untranslated regions of the RNA genomes of all members of the Enterovirus genus of Picornaviridae exhibit a potential, pseudoknot-like, tertiary structure interaction of an unusual type. This is formed by base pairing between loop regions of two secondary structure domains. It is distinct from a potential, conventional pseudoknot, studied previously in poliovirus, which is less conserved phylogenetically. We have analyzed the tertiary structure feature in one enterovirus, coxsackievirus A9, using specific mutagenesis. A double mutant in which the potential interaction was destroyed was nonviable, and viability was restored by introducing compensating mutations, predicted to allow the interaction to reform. Phenotypic pseudorevertants of virus mutants, having mutations designed to disrupt the interaction, were all found to have acquired nucleotide changes which restored the potential interaction. Analysis of one mutant containing a single-base mutation indicated a greatly increased temperature sensitivity due to a step early in replication. The results show that, in addition to secondary structures, tertiary RNA structural interactions can play an important role in the biology of picornaviruses.

Full Text

The Full Text of this article is available as a PDF (122.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andino R., Rieckhof G. E., Achacoso P. L., Baltimore D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 1993 Sep;12(9):3587–3598. doi: 10.1002/j.1460-2075.1993.tb06032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley I., Digard P., Inglis S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang K. H., Auvinen P., Hyypiä T., Stanway G. The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. J Gen Virol. 1989 Dec;70(Pt 12):3269–3280. doi: 10.1099/0022-1317-70-12-3269. [DOI] [PubMed] [Google Scholar]
  4. Cui T., Porter A. G. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3'-noncoding region of the viral RNA. Nucleic Acids Res. 1995 Feb 11;23(3):377–382. doi: 10.1093/nar/23.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dam E., Pleij K., Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry. 1992 Dec 1;31(47):11665–11676. doi: 10.1021/bi00162a001. [DOI] [PubMed] [Google Scholar]
  6. Gallie D. R., Walbot V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 1990 Jul;4(7):1149–1157. doi: 10.1101/gad.4.7.1149. [DOI] [PubMed] [Google Scholar]
  7. Gama R. E., Horsnell P. R., Hughes P. J., North C., Bruce C. B., al-Nakib W., Stanway G. Amplification of rhinovirus specific nucleic acids from clinical samples using the polymerase chain reaction. J Med Virol. 1989 Jun;28(2):73–77. doi: 10.1002/jmv.1890280204. [DOI] [PubMed] [Google Scholar]
  8. Harris K. S., Xiang W., Alexander L., Lane W. S., Paul A. V., Wimmer E. Interaction of poliovirus polypeptide 3CDpro with the 5' and 3' termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J Biol Chem. 1994 Oct 28;269(43):27004–27014. [PubMed] [Google Scholar]
  9. Hou Y. M., Westhof E., Giegé R. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6776–6780. doi: 10.1073/pnas.90.14.6776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hughes P. J., Horsnell C., Hyypiä T., Stanway G. The coxsackievirus A9 RGD motif is not essential for virus viability. J Virol. 1995 Dec;69(12):8035–8040. doi: 10.1128/jvi.69.12.8035-8040.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hyypiä T., Stanway G. Biology of coxsackie A viruses. Adv Virus Res. 1993;42:343–373. doi: 10.1016/s0065-3527(08)60089-5. [DOI] [PubMed] [Google Scholar]
  12. Jacobson S. J., Konings D. A., Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993 Jun;67(6):2961–2971. doi: 10.1128/jvi.67.6.2961-2971.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kooi E. A., Rutgers C. A., Mulder A., Van't Riet J., Venema J., Raué H. A. The phylogenetically conserved doublet tertiary interaction in domain III of the large subunit rRNA is crucial for ribosomal protein binding. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):213–216. doi: 10.1073/pnas.90.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lahser F. C., Marsh L. E., Hall T. C. Contributions of the brome mosaic virus RNA-3 3'-nontranslated region to replication and translation. J Virol. 1993 Jun;67(6):3295–3303. doi: 10.1128/jvi.67.6.3295-3303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Le S. Y., Chen J. H., Sonenberg N., Maizel J. V. Conserved tertiary structure elements in the 5' untranslated region of human enteroviruses and rhinoviruses. Virology. 1992 Dec;191(2):858–866. doi: 10.1016/0042-6822(92)90261-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pierangeli A., Bucci M., Pagnotti P., Degener A. M., Perez Bercoff R. Mutational analysis of the 3'-terminal extra-cistronic region of poliovirus RNA: secondary structure is not the only requirement for minus strand RNA replication. FEBS Lett. 1995 Nov 6;374(3):327–332. doi: 10.1016/0014-5793(95)01127-z. [DOI] [PubMed] [Google Scholar]
  17. Pilipenko E. V., Maslova S. V., Sinyakov A. N., Agol V. I. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 1992 Apr 11;20(7):1739–1745. doi: 10.1093/nar/20.7.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pöyry T., Hyypiä T., Horsnell C., Kinnunen L., Hovi T., Stanway G. Molecular analysis of coxsackievirus A16 reveals a new genetic group of enteroviruses. Virology. 1994 Aug 1;202(2):982–987. doi: 10.1006/viro.1994.1423. [DOI] [PubMed] [Google Scholar]
  19. Pöyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. Genetic and phylogenetic clustering of enteroviruses. J Gen Virol. 1996 Aug;77(Pt 8):1699–1717. doi: 10.1099/0022-1317-77-8-1699. [DOI] [PubMed] [Google Scholar]
  20. Rohll J. B., Moon D. H., Evans D. J., Almond J. W. The 3' untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol. 1995 Dec;69(12):7835–7844. doi: 10.1128/jvi.69.12.7835-7844.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rohll J. B., Percy N., Ley R., Evans D. J., Almond J. W., Barclay W. S. The 5'-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol. 1994 Jul;68(7):4384–4391. doi: 10.1128/jvi.68.7.4384-4391.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sarnow P., Bernstein H. D., Baltimore D. A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome. Proc Natl Acad Sci U S A. 1986 Feb;83(3):571–575. doi: 10.1073/pnas.83.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Skinner M. A., Racaniello V. R., Dunn G., Cooper J., Minor P. D., Almond J. W. New model for the secondary structure of the 5' non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol. 1989 May 20;207(2):379–392. doi: 10.1016/0022-2836(89)90261-1. [DOI] [PubMed] [Google Scholar]
  24. Stanway G., Hughes P. J., Mountford R. C., Reeve P., Minor P. D., Schild G. C., Almond J. W. Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/Leon 12a1b. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1539–1543. doi: 10.1073/pnas.81.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stanway G. Structure, function and evolution of picornaviruses. J Gen Virol. 1990 Nov;71(Pt 11):2483–2501. doi: 10.1099/0022-1317-71-11-2483. [DOI] [PubMed] [Google Scholar]
  26. Tobin G. J., Young D. C., Flanegan J. B. Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA. Cell. 1989 Nov 3;59(3):511–519. doi: 10.1016/0092-8674(89)90034-2. [DOI] [PubMed] [Google Scholar]
  27. Todd S., Nguyen J. H., Semler B. L. RNA-protein interactions directed by the 3' end of human rhinovirus genomic RNA. J Virol. 1995 Jun;69(6):3605–3614. doi: 10.1128/jvi.69.6.3605-3614.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Todd S., Semler B. L. Structure-infectivity analysis of the human rhinovirus genomic RNA 3' non-coding region. Nucleic Acids Res. 1996 Jun 1;24(11):2133–2142. doi: 10.1093/nar/24.11.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vila A., Viril-Farley J., Tapprich W. E. Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11148–11152. doi: 10.1073/pnas.91.23.11148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zuker M. Computer prediction of RNA structure. Methods Enzymol. 1989;180:262–288. doi: 10.1016/0076-6879(89)80106-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES