Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Mar;71(3):2371–2382. doi: 10.1128/jvi.71.3.2371-2382.1997

Characterization of the components and activity of Sonchus yellow net rhabdovirus polymerase.

J D Wagner 1, A O Jackson 1
PMCID: PMC191347  PMID: 9032374

Abstract

Sonchus yellow net virus (SYNV) is the best-characterized member of a group of plant rhabdoviruses that replicate in the host cell nucleus. Using a recently developed method for partial purification of active SYNV polymerase by salt extraction of nuclei from infected plant tissue (J. D. O. Wagner et al, J. Virol. 70:468-477, 1996), we have identified the nucleocapsid (N), M2, and L proteins as polymerase complex components (based on copurification with the polymerase activity and by coimmunoprecipitation assays). Furthermore, the L protein was shown by antibody inhibition analysis to be a functional component of the polymerase. A second complex of M2 and L proteins, thought to be a precursor to the polymerase complex, was also identified. In addition, we conducted a detailed characterization of SYNV RNA synthesis in vitro. The results demonstrate that the RNAs are transcribed sequentially, beginning with the N mRNA and followed successively by the remaining five mRNAs in the order of their genome organization. Gene expression conforms to a cascade pattern, with synthesis of the 3'-proximal N mRNA occurring at the highest level, followed by consecutively lower levels of transcription from each subsequent gene. The reaction conditions favor transcription over minus-sense RNA replication, which, we posit, is inhibited near specific signal sequences located on the antigenomic template. The results support the concept that the mechanism of transcription is highly conserved among diverse rhabdoviruses and are compatible with a unified model for the regulation of genomic and antigenomic RNA synthesis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham G., Banerjee A. K. Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976 May;73(5):1504–1508. doi: 10.1073/pnas.73.5.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnheiter H., Davis N. L., Wertz G., Schubert M., Lazzarini R. A. Role of the nucleocapsid protein in regulating vesicular stomatitis virus RNA synthesis. Cell. 1985 May;41(1):259–267. doi: 10.1016/0092-8674(85)90079-0. [DOI] [PubMed] [Google Scholar]
  3. Ball L. A., White C. N. Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):442–446. doi: 10.1073/pnas.73.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banerjee A. K., Barik S. Gene expression of vesicular stomatitis virus genome RNA. Virology. 1992 Jun;188(2):417–428. doi: 10.1016/0042-6822(92)90495-b. [DOI] [PubMed] [Google Scholar]
  5. Banerjee A. K. Transcription and replication of rhabdoviruses. Microbiol Rev. 1987 Mar;51(1):66–87. doi: 10.1128/mr.51.1.66-87.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blumberg B. M., Leppert M., Kolakofsky D. Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell. 1981 Mar;23(3):837–845. doi: 10.1016/0092-8674(81)90448-7. [DOI] [PubMed] [Google Scholar]
  7. Bras F., Teninges D., Dezelee S. Sequences of the N and M genes of the sigma virus of Drosophila and evolutionary comparison. Virology. 1994 Apr;200(1):189–199. doi: 10.1006/viro.1994.1177. [DOI] [PubMed] [Google Scholar]
  8. Choi T. J., Kuwata S., Koonin E. V., Heaton L. A., Jackson A. O. Structure of the L (polymerase) protein gene of sonchus yellow net virus. Virology. 1992 Jul;189(1):31–39. doi: 10.1016/0042-6822(92)90678-i. [DOI] [PubMed] [Google Scholar]
  9. Conzelmann K. K. Genetic manipulation of non-segmented negative-strand RNA viruses. J Gen Virol. 1996 Mar;77(Pt 3):381–389. doi: 10.1099/0022-1317-77-3-381. [DOI] [PubMed] [Google Scholar]
  10. Conzelmann K. K., Schnell M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol. 1994 Feb;68(2):713–719. doi: 10.1128/jvi.68.2.713-719.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De B. P., Banerjee A. K. Requirements and functions of vesicular stomatitis virus L and NS proteins in the transcription process in vitro. Biochem Biophys Res Commun. 1985 Jan 16;126(1):40–49. doi: 10.1016/0006-291x(85)90568-6. [DOI] [PubMed] [Google Scholar]
  12. De B. P., Banerjee A. K. Specific interactions of vesicular stomatitis virus L and NS proteins with heterologous genome ribonucleoprotein template lead to mRNA synthesis in vitro. J Virol. 1984 Sep;51(3):628–634. doi: 10.1128/jvi.51.3.628-634.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emerson S. U., Wagner R. R. L protein requirement for in vitro RNA synthesis by vesicular stomatitis virus. J Virol. 1973 Dec;12(6):1325–1335. doi: 10.1128/jvi.12.6.1325-1335.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Emerson S. U., Yu Y. Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus. J Virol. 1975 Jun;15(6):1348–1356. doi: 10.1128/jvi.15.6.1348-1356.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flamand A., Delagneau J. F. Transcriptional mapping of rabies virus in vivo. J Virol. 1978 Nov;28(2):518–523. doi: 10.1128/jvi.28.2.518-523.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glazier K., Raghow R., Kingsbury D. W. Regulation of Sendai virus transcription: evidence for a single promoter in vivo. J Virol. 1977 Mar;21(3):863–871. doi: 10.1128/jvi.21.3.863-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heaton L. A., Hillman B. I., Hunter B. G., Zuidema D., Jackson A. O. Physical map of the genome of sonchus yellow net virus, a plant rhabdovirus with six genes and conserved gene junction sequences. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8665–8668. doi: 10.1073/pnas.86.22.8665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herman R. C., Schubert M., Keene J. D., Lazzarini R. A. Polycistronic vesicular stomatitis virus RNA transcripts. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4662–4665. doi: 10.1073/pnas.77.8.4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill V. M., Marnell L., Summers D. F. In vitro replication and assembly of vesicular stomatitis virus nucleocapsids. Virology. 1981 Aug;113(1):109–118. doi: 10.1016/0042-6822(81)90140-9. [DOI] [PubMed] [Google Scholar]
  20. Hill V. M., Simonsen C. C., Summers D. F. Characterization of vesicular stomatitis virus replicating complexes isolated in renografin gradients. Virology. 1979 Nov;99(1):75–83. doi: 10.1016/0042-6822(79)90038-2. [DOI] [PubMed] [Google Scholar]
  21. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol. 1992 Aug;66(8):4901–4908. doi: 10.1128/jvi.66.8.4901-4908.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Howard M., Wertz G. Vesicular stomatitis virus RNA replication: a role for the NS protein. J Gen Virol. 1989 Oct;70(Pt 10):2683–2694. doi: 10.1099/0022-1317-70-10-2683. [DOI] [PubMed] [Google Scholar]
  23. Iverson L. E., Rose J. K. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell. 1981 Feb;23(2):477–484. doi: 10.1016/0092-8674(81)90143-4. [DOI] [PubMed] [Google Scholar]
  24. Jackson A. O. Partial characterization of the structural proteins of sonchus yellow net virus. Virology. 1978 Jun 1;87(1):172–181. doi: 10.1016/0042-6822(78)90169-1. [DOI] [PubMed] [Google Scholar]
  25. Jones R. W., Jackson A. O. Replication of sonchus yellow net virus in infected protoplasts. Virology. 1990 Dec;179(2):815–820. doi: 10.1016/0042-6822(90)90149-l. [DOI] [PubMed] [Google Scholar]
  26. Konforti B. B., Koziolkiewicz M. J., Konarska M. M. Disruption of base pairing between the 5' splice site and the 5' end of U1 snRNA is required for spliceosome assembly. Cell. 1993 Dec 3;75(5):863–873. doi: 10.1016/0092-8674(93)90531-t. [DOI] [PubMed] [Google Scholar]
  27. Koonin E. V., Dolja V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol. 1993;28(5):375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
  28. Leppert M., Rittenhouse L., Perrault J., Summers D. F., Kolakofsky D. Plus and minus strand leader RNAs in negative strand virus-infected cells. Cell. 1979 Nov;18(3):735–747. doi: 10.1016/0092-8674(79)90127-2. [DOI] [PubMed] [Google Scholar]
  29. Masters P. S., Banerjee A. K. Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to nonspecific RNA. J Virol. 1988 Aug;62(8):2658–2664. doi: 10.1128/jvi.62.8.2658-2664.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Masters P. S., Samuel C. E. Detection of in vivo synthesis of polycistronic mRNAs of vesicular stomatitis virus. Virology. 1984 Apr 30;134(2):277–286. doi: 10.1016/0042-6822(84)90297-6. [DOI] [PubMed] [Google Scholar]
  31. Ongrádi J., Cunningham C., Szilágyi J. F. The role of polypeptides L and NS in the transcription process of vesicular stomatitis virus New Jersey using the temperature-sensitive mutant tsE1. J Gen Virol. 1985 May;66(Pt 5):1011–1023. doi: 10.1099/0022-1317-66-5-1011. [DOI] [PubMed] [Google Scholar]
  32. Pattnaik A. K., Wertz G. W. Cells that express all five proteins of vesicular stomatitis virus from cloned cDNAs support replication, assembly, and budding of defective interfering particles. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1379–1383. doi: 10.1073/pnas.88.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pattnaik A. K., Wertz G. W. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J Virol. 1990 Jun;64(6):2948–2957. doi: 10.1128/jvi.64.6.2948-2957.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Patton J. T., Davis N. L., Wertz G. W. Cell-free synthesis and assembly of vesicular stomatitis virus nucleocapsids. J Virol. 1983 Jan;45(1):155–164. doi: 10.1128/jvi.45.1.155-164.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Patton J. T., Davis N. L., Wertz G. W. N protein alone satisfies the requirement for protein synthesis during RNA replication of vesicular stomatitis virus. J Virol. 1984 Feb;49(2):303–309. doi: 10.1128/jvi.49.2.303-309.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peluso R. W. Kinetic, quantitative, and functional analysis of multiple forms of the vesicular stomatitis virus nucleocapsid protein in infected cells. J Virol. 1988 Aug;62(8):2799–2807. doi: 10.1128/jvi.62.8.2799-2807.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peluso R. W., Moyer S. A. Initiation and replication of vesicular stomatitis virus genome RNA in a cell-free system. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3198–3202. doi: 10.1073/pnas.80.11.3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peluso R. W., Moyer S. A. Viral proteins required for the in vitro replication of vesicular stomatitis virus defective interfering particle genome RNA. Virology. 1988 Feb;162(2):369–376. doi: 10.1016/0042-6822(88)90477-1. [DOI] [PubMed] [Google Scholar]
  39. Pennica D., Lynch K. R., Cohen P. S., Ennis H. L. Decay of vesicular stomatitis virus mRNAs in vivo. Virology. 1979 Apr 30;94(2):484–487. doi: 10.1016/0042-6822(79)90480-x. [DOI] [PubMed] [Google Scholar]
  40. Perrault J., Clinton G. M., McClure M. A. RNP template of vesicular stomatitis virus regulates transcription and replication functions. Cell. 1983 Nov;35(1):175–185. doi: 10.1016/0092-8674(83)90220-9. [DOI] [PubMed] [Google Scholar]
  41. Rhodes D. P., Moyer S. A., Banerjee A. K. In vitro synthesis of methylated messenger RNA by the virion-associated RNA polymerase of vesicular stomatitis virus. Cell. 1974 Dec;3(4):327–333. doi: 10.1016/0092-8674(74)90046-4. [DOI] [PubMed] [Google Scholar]
  42. Rose J. K. Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus. Cell. 1980 Feb;19(2):415–421. doi: 10.1016/0092-8674(80)90515-2. [DOI] [PubMed] [Google Scholar]
  43. Schneemann A., Schneider P. A., Lamb R. A., Lipkin W. I. The remarkable coding strategy of borna disease virus: a new member of the nonsegmented negative strand RNA viruses. Virology. 1995 Jun 20;210(1):1–8. doi: 10.1006/viro.1995.1311. [DOI] [PubMed] [Google Scholar]
  44. Scholthof K. B., Hillman B. I., Modrell B., Heaton L. A., Jackson A. O. Characterization and detection of sc4: a sixth gene encoded by sonchus yellow net virus. Virology. 1994 Oct;204(1):279–288. doi: 10.1006/viro.1994.1532. [DOI] [PubMed] [Google Scholar]
  45. Villarreal L. P., Breindl M., Holland J. J. Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry. 1976 Apr 20;15(8):1663–1667. doi: 10.1021/bi00653a012. [DOI] [PubMed] [Google Scholar]
  46. Wagner J. D., Choi T. J., Jackson A. O. Extraction of nuclei from sonchus yellow net rhabdovirus-infected plants yields a polymerase that synthesizes viral mRNAs and polyadenylated plus-strand leader RNA. J Virol. 1996 Jan;70(1):468–477. doi: 10.1128/jvi.70.1.468-477.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wetzel T., Dietzgen R. G., Dale J. L. Genomic organization of lettuce necrotic yellows rhabdovirus. Virology. 1994 May 1;200(2):401–412. doi: 10.1006/viro.1994.1204. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES