Abstract
We examined intratype human papillomavirus type 16 (HPV-16) sequence variation in tumor samples that were collected and analyzed in an international study of invasive cervical cancer. The collection included tumors from 22 countries in five continents. Using our recently developed E6 and L1 PCR-based hybridization systems to distinguish HPV-16 variant lineages, we analyzed material from tumors previously found to contain HPV-16 DNA. Of 408 specimens analyzed in the E6 hybridization assay, 376 (92.2%) belonged to previously reported HPV-16 variant lineages. The remaining 32 specimens (7.8%) harbored HPV-16 variants with novel hybridization patterns, novel nucleotide changes, or both. Nucleotide sequences (1,203 bp) were determined for the E6, the MY09/11 region of L1, and the long control region of each novel variant and representative specimens from each hybridization pattern observed. Based on E6 hybridization patterns, most of the variants from European and North American samples were phylogenetically classified as European prototype (E) while samples from Africa contained primarily African 1 (Af1) or African 2 (Af2) variants. The majority of Asian (As) variants were observed in Southeast Asia, and almost all Asian American (AA) variants were from Central and South America or Spain. A single North American 1 (NA1) variant was detected in a tumor from Argentina. Nucleotide changes previously shown to covary between the MY09/11 region of L1 and the E6 coding region were examined in a subset of 249 specimens. We observed 22 combined E6-L1 hybridization patterns, of which 11 (in 21 samples) were novel. No unanticipated nucleotide covariation was observed between the E class and the AA-Af1-Af2-NA1 classes, suggesting the absence or rarity of genomic recombination between HPV-16 lineages. This extensive description of HPV-16 variants forms a basis for further examining the relationship between intratype variation and basic functional differences in biological activities. HPV-16 variants may prove important for the determination of the risk of cervical neoplasia and for the design of HPV-16 vaccine strategies.
Full Text
The Full Text of this article is available as a PDF (635.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bavin P. J., Walker P. G., Emery V. C. Sequence microheterogeneity in the long control region of clinical isolates of human papillomavirus type 16. J Med Virol. 1993 Apr;39(4):267–272. doi: 10.1002/jmv.1890390402. [DOI] [PubMed] [Google Scholar]
- Bernard H. U., Chan S. Y., Manos M. M., Ong C. K., Villa L. L., Delius H., Peyton C. L., Bauer H. M., Wheeler C. M. Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J Infect Dis. 1994 Nov;170(5):1077–1085. doi: 10.1093/infdis/170.5.1077. [DOI] [PubMed] [Google Scholar]
- Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
- Cheng G., Icenogle J. P., Kirnbauer R., Hubbert N. L., St Louis M. E., Han C., Svare E. I., Kjaer S. K., Lowy D. R., Schiller J. T. Divergent human papillomavirus type 16 variants are serologically cross-reactive. J Infect Dis. 1995 Dec;172(6):1584–1587. doi: 10.1093/infdis/172.6.1584. [DOI] [PubMed] [Google Scholar]
- Ellis J. R., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S. The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nat Med. 1995 May;1(5):464–470. doi: 10.1038/nm0595-464. [DOI] [PubMed] [Google Scholar]
- Eluf-Neto J., Booth M., Muñoz N., Bosch F. X., Meijer C. J., Walboomers J. M. Human papillomavirus and invasive cervical cancer in Brazil. Br J Cancer. 1994 Jan;69(1):114–119. doi: 10.1038/bjc.1994.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eschle D., Dürst M., ter Meulen J., Luande J., Eberhardt H. C., Pawlita M., Gissmann L. Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. J Gen Virol. 1992 Jul;73(Pt 7):1829–1832. doi: 10.1099/0022-1317-73-7-1829. [DOI] [PubMed] [Google Scholar]
- Fujinaga Y., Okazawa K., Nishikawa A., Yamakawa Y., Fukushima M., Kato I., Fujinaga K. Sequence variation of human papillomavirus type 16 E7 in preinvasive and invasive cervical neoplasias. Virus Genes. 1994 Sep;9(1):85–92. doi: 10.1007/BF01703438. [DOI] [PubMed] [Google Scholar]
- Hecht J. L., Kadish A. S., Jiang G., Burk R. D. Genetic characterization of the human papillomavirus (HPV) 18 E2 gene in clinical specimens suggests the presence of a subtype with decreased oncogenic potential. Int J Cancer. 1995 Jan 27;60(3):369–376. doi: 10.1002/ijc.2910600317. [DOI] [PubMed] [Google Scholar]
- Ho L., Chan S. Y., Chow V., Chong T., Tay S. K., Villa L. L., Bernard H. U. Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. J Clin Microbiol. 1991 Sep;29(9):1765–1772. doi: 10.1128/jcm.29.9.1765-1772.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho L., Tay S. K., Chan S. Y., Bernard H. U. Sequence variants of human papillomavirus type 16 from couples suggest sexual transmission with low infectivity and polyclonality in genital neoplasia. J Infect Dis. 1993 Oct;168(4):803–809. doi: 10.1093/infdis/168.4.803. [DOI] [PubMed] [Google Scholar]
- Icenogle J. P., Laga M., Miller D., Manoka A. T., Tucker R. A., Reeves W. C. Genotypes and sequence variants of human papillomavirus DNAs from human immunodeficiency virus type 1-infected women with cervical intraepithelial neoplasia. J Infect Dis. 1992 Dec;166(6):1210–1216. doi: 10.1093/infdis/166.6.1210. [DOI] [PubMed] [Google Scholar]
- Icenogle J. P., Sathya P., Miller D. L., Tucker R. A., Rawls W. E. Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and type 16. Virology. 1991 Sep;184(1):101–107. doi: 10.1016/0042-6822(91)90826-w. [DOI] [PubMed] [Google Scholar]
- Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993 Dec;67(12):6929–6936. doi: 10.1128/jvi.67.12.6929-6936.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koutsky L. A., Holmes K. K., Critchlow C. W., Stevens C. E., Paavonen J., Beckmann A. M., DeRouen T. A., Galloway D. A., Vernon D., Kiviat N. B. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992 Oct 29;327(18):1272–1278. doi: 10.1056/NEJM199210293271804. [DOI] [PubMed] [Google Scholar]
- Londesborough P., Ho L., Terry G., Cuzick J., Wheeler C., Singer A. Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities. Int J Cancer. 1996 Oct 21;69(5):364–368. doi: 10.1002/(SICI)1097-0215(19961021)69:5<364::AID-IJC2>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Matsukura T., Kanda T., Furuno A., Yoshikawa H., Kawana T., Yoshiike K. Cloning of monomeric human papillomavirus type 16 DNA integrated within cell DNA from a cervical carcinoma. J Virol. 1986 Jun;58(3):979–982. doi: 10.1128/jvi.58.3.979-982.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muñoz N., Bosch F. X., de Sanjosé S., Tafur L., Izarzugaza I., Gili M., Viladiu P., Navarro C., Martos C., Ascunce N. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. Int J Cancer. 1992 Nov 11;52(5):743–749. doi: 10.1002/ijc.2910520513. [DOI] [PubMed] [Google Scholar]
- Pushko P., Sasagawa T., Cuzick J., Crawford L. Sequence variation in the capsid protein genes of human papillomavirus type 16. J Gen Virol. 1994 Apr;75(Pt 4):911–916. doi: 10.1099/0022-1317-75-4-911. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiffman M. H., Bauer H. M., Hoover R. N., Glass A. G., Cadell D. M., Rush B. B., Scott D. R., Sherman M. E., Kurman R. J., Wacholder S. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst. 1993 Jun 16;85(12):958–964. doi: 10.1093/jnci/85.12.958. [DOI] [PubMed] [Google Scholar]
- Seedorf K., Krämmer G., Dürst M., Suhai S., Röwekamp W. G. Human papillomavirus type 16 DNA sequence. Virology. 1985 Aug;145(1):181–185. doi: 10.1016/0042-6822(85)90214-4. [DOI] [PubMed] [Google Scholar]
- Smits H. L., Traanberg K. F., Krul M. R., Prussia P. R., Kuiken C. L., Jebbink M. F., Kleyne J. A., van den Berg R. H., Capone B., de Bruyn A. Identification of a unique group of human papillomavirus type 16 sequence variants among clinical isolates from Barbados. J Gen Virol. 1994 Sep;75(Pt 9):2457–2462. doi: 10.1099/0022-1317-75-9-2457. [DOI] [PubMed] [Google Scholar]
- Stewart A. C., Eriksson A. M., Manos M. M., Muñoz N., Bosch F. X., Peto J., Wheeler C. M. Intratype variation in 12 human papillomavirus types: a worldwide perspective. J Virol. 1996 May;70(5):3127–3136. doi: 10.1128/jvi.70.5.3127-3136.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stöppler M. C., Ching K., Stöppler H., Clancy K., Schlegel R., Icenogle J. Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol. 1996 Oct;70(10):6987–6993. doi: 10.1128/jvi.70.10.6987-6993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler C. M., Yamada T., Hildesheim A., Jenison S. A. Human papillomavirus type 16 sequence variants: identification by E6 and L1 lineage-specific hybridization. J Clin Microbiol. 1997 Jan;35(1):11–19. doi: 10.1128/jcm.35.1.11-19.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xi L. F., Demers G. W., Koutsky L. A., Kiviat N. B., Kuypers J., Watts D. H., Holmes K. K., Galloway D. A. Analysis of human papillomavirus type 16 variants indicates establishment of persistent infection. J Infect Dis. 1995 Sep;172(3):747–755. doi: 10.1093/infdis/172.3.747. [DOI] [PubMed] [Google Scholar]
- Yamada T., Wheeler C. M., Halpern A. L., Stewart A. C., Hildesheim A., Jenison S. A. Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments. J Virol. 1995 Dec;69(12):7743–7753. doi: 10.1128/jvi.69.12.7743-7753.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]