Abstract
We describe spontaneous second-site reversions within the coat protein open reading frame that rescue the systemic-spread phenotype and increase virion stability of a mutant of brome mosaic virus. Based on the crystal structure of the related cowpea chlorotic mottle virus, we show that the modified residues are spatially clustered to affect the formation of hexamers and pentamers and therefore virion stability.
Full Text
The Full Text of this article is available as a PDF (464.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison R., Thompson C., Ahlquist P. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1820–1824. doi: 10.1073/pnas.87.5.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bancroft J. B., Bracker C. E., Wagner G. W. Structures derived from cowpea chlorotic mottle and brome mosaic virus protein. Virology. 1969 Jun;38(2):324–335. doi: 10.1016/0042-6822(69)90374-2. [DOI] [PubMed] [Google Scholar]
- Bancroft J. B. The self-assembly of spherical plant viruses. Adv Virus Res. 1970;16:99–134. doi: 10.1016/s0065-3527(08)60022-6. [DOI] [PubMed] [Google Scholar]
- Boccard F., Baulcombe D. Mutational analysis of cis-acting sequences and gene function in RNA3 of cucumber mosaic virus. Virology. 1993 Apr;193(2):563–578. doi: 10.1006/viro.1993.1165. [DOI] [PubMed] [Google Scholar]
- Bujarski J. J., Nagy P. D., Flasinski S. Molecular studies of genetic RNA-RNA recombination in brome mosaic virus. Adv Virus Res. 1994;43:275–302. doi: 10.1016/S0065-3527(08)60051-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman S., Hills G., Watts J., Baulcombe D. Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology. 1992 Nov;191(1):223–230. doi: 10.1016/0042-6822(92)90183-p. [DOI] [PubMed] [Google Scholar]
- Citovsky V., Zambryski P. How do plant virus nucleic acids move through intercellular connections? Bioessays. 1991 Aug;13(8):373–379. doi: 10.1002/bies.950130802. [DOI] [PubMed] [Google Scholar]
- De Jong W., Ahlquist P. Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range. J Virol. 1995 Mar;69(3):1485–1492. doi: 10.1128/jvi.69.3.1485-1492.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deom C. M., Lapidot M., Beachy R. N. Plant virus movement proteins. Cell. 1992 Apr 17;69(2):221–224. doi: 10.1016/0092-8674(92)90403-y. [DOI] [PubMed] [Google Scholar]
- Dolja V. V., Haldeman-Cahill R., Montgomery A. E., Vandenbosch K. A., Carrington J. C. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology. 1995 Feb 1;206(2):1007–1016. doi: 10.1006/viro.1995.1023. [DOI] [PubMed] [Google Scholar]
- Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C. Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J. 1994 Mar 15;13(6):1482–1491. doi: 10.1002/j.1460-2075.1994.tb06403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flasinski S., Dzianott A., Pratt S., Bujarski J. J. Mutational analysis of the coat protein gene of brome mosaic virus: effects on replication and movement in barley and in Chenopodium hybridum. Mol Plant Microbe Interact. 1995 Jan-Feb;8(1):23–31. doi: 10.1094/mpmi-8-0023. [DOI] [PubMed] [Google Scholar]
- Hilf M. E., Dawson W. O. The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology. 1993 Mar;193(1):106–114. doi: 10.1006/viro.1993.1107. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Mise K., Allison R. F., Janda M., Ahlquist P. Bromovirus movement protein genes play a crucial role in host specificity. J Virol. 1993 May;67(5):2815–2823. doi: 10.1128/jvi.67.5.2815-2823.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacher R., Ahlquist P. Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J Virol. 1989 Nov;63(11):4545–4552. doi: 10.1128/jvi.63.11.4545-4552.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speir J. A., Munshi S., Wang G., Baker T. S., Johnson J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure. 1995 Jan 15;3(1):63–78. doi: 10.1016/s0969-2126(01)00135-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki M., Kuwata S., Kataoka J., Masuta C., Nitta N., Takanami Y. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology. 1991 Jul;183(1):106–113. doi: 10.1016/0042-6822(91)90123-s. [DOI] [PubMed] [Google Scholar]
- Séron K., Haenni A. L. Vascular movement of plant viruses. Mol Plant Microbe Interact. 1996 Aug;9(6):435–442. doi: 10.1094/mpmi-9-0435. [DOI] [PubMed] [Google Scholar]
- Taliansky M. E., García-Arenal F. Role of cucumovirus capsid protein in long-distance movement within the infected plant. J Virol. 1995 Feb;69(2):916–922. doi: 10.1128/jvi.69.2.916-922.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]