Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):2636–2646. doi: 10.1128/jvi.71.4.2636-2646.1997

Genetic determinants of Sindbis virus neuroinvasiveness.

J Dubuisson 1, S Lustig 1, N Ruggli 1, Y Akov 1, C M Rice 1
PMCID: PMC191385  PMID: 9060616

Abstract

After peripheral inoculation of mice, Sindbis virus replicates in a variety of tissues, leading to viremia. In some cases, the virus can enter the central nervous system (CNS) and cause lethal encephalitis. The outcome of infection is age and virus strain dependent. Recently, two pairs of Sindbis virus variants differing in neurovirulence and neuroinvasiveness were derived by limited serial passaging in mouse brain. Two early passage isolates (SVA and SVB) were neurotropic but did not cause lethal encephalitis. SVB, but not SVA, was neuroinvasive. A second independent pair of isolates (SVN and SVNI), which had undergone more extensive mouse brain passaging, were highly neurotropic and caused lethal encephalitis. Only SVNI could reach the brain after peripheral inoculation. From these isolates, virion RNAs were obtained and used to construct full-length cDNA clones from which infectious RNA transcripts could be recovered. The strains recovered from these clones were shown to retain the appropriate phenotypes in weanling mice. Construction and analysis of recombinant viruses were used to define the genetic loci determining neuroinvasion. For SVB, neuroinvasiveness was determined by a single residue in the E2 glycoprotein (Gln-55). For SVNI, neuroinvasive loci were identified in both the 5' noncoding region (position 8) and the E2 glycoprotein (Met-190). Either of these changes on the SVN background was sufficient to confer a neuroinvasive phenotype, although these recombinants were less virulent. To completely mimic the SVNI phenotype, three SVNI-specific substitutions on the SVN background were required: G at position 8, E2 Met-190, and Lys-260, which by itself had no effect on neuroinvasion. These genetically defined strains should be useful for dissecting the molecular mechanisms leading to Sindbis virus invasion of the CNS.

Full Text

The Full Text of this article is available as a PDF (577.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Charles P. C., Walters E., Margolis F., Johnston R. E. Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology. 1995 Apr 20;208(2):662–671. doi: 10.1006/viro.1995.1197. [DOI] [PubMed] [Google Scholar]
  2. Chaturvedi U. C., Dhawan R., Khanna M., Mathur A. Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol. 1991 Apr;72(Pt 4):859–866. doi: 10.1099/0022-1317-72-4-859. [DOI] [PubMed] [Google Scholar]
  3. Cheng R. H., Kuhn R. J., Olson N. H., Rossmann M. G., Choi H. K., Smith T. J., Baker T. S. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell. 1995 Feb 24;80(4):621–630. doi: 10.1016/0092-8674(95)90516-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis N. L., Fuller F. J., Dougherty W. G., Olmsted R. A., Johnston R. E. A single nucleotide change in the E2 glycoprotein gene of Sindbis virus affects penetration rate in cell culture and virulence in neonatal mice. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6771–6775. doi: 10.1073/pnas.83.18.6771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dropulić B., Masters C. L. Entry of neurotropic arboviruses into the central nervous system: an in vitro study using mouse brain endothelium. J Infect Dis. 1990 Apr;161(4):685–691. doi: 10.1093/infdis/161.4.685. [DOI] [PubMed] [Google Scholar]
  6. Dubuisson J., Rice C. M. Sindbis virus attachment: isolation and characterization of mutants with impaired binding to vertebrate cells. J Virol. 1993 Jun;67(6):3363–3374. doi: 10.1128/jvi.67.6.3363-3374.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fazakerley J. K., Pathak S., Scallan M., Amor S., Dyson H. Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology. 1993 Aug;195(2):627–637. doi: 10.1006/viro.1993.1414. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez-Scarano F., Tyler K. L. Molecular pathogenesis of neurotropic viral infections. Ann Neurol. 1987 Nov;22(5):565–574. doi: 10.1002/ana.410220502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffin D. E., Johnson R. T. Role of the immune response in recovery from Sindbis virus encephalitis in mice. J Immunol. 1977 Mar;118(3):1070–1075. [PubMed] [Google Scholar]
  10. Griffin D. E. Molecular pathogenesis of Sindbis virus encephalitis in experimental animals. Adv Virus Res. 1989;36:255–271. doi: 10.1016/s0065-3527(08)60587-4. [DOI] [PubMed] [Google Scholar]
  11. Hahn C. S., Strauss E. G., Strauss J. H. Dideoxy sequencing of RNA using reverse transcriptase. Methods Enzymol. 1989;180:121–130. doi: 10.1016/0076-6879(89)80097-7. [DOI] [PubMed] [Google Scholar]
  12. Haller A. A., Stewart S. R., Semler B. L. Attenuation stem-loop lesions in the 5' noncoding region of poliovirus RNA: neuronal cell-specific translation defects. J Virol. 1996 Mar;70(3):1467–1474. doi: 10.1128/jvi.70.3.1467-1474.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JOHNSON R. T. VIRUS INVASION OF THE CENTRAL NERVOUS SYSTEM: A STUDY OF SINDBIS VIRUS INFECTION IN THE MOUSE USING FLUORESCENT ANTIBODY. Am J Pathol. 1965 Jun;46:929–943. [PMC free article] [PubMed] [Google Scholar]
  14. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson R. T., McFarland H. F., Levy S. E. Age-dependent resistance to viral encephalitis: studies of infections due to Sindbis virus in mice. J Infect Dis. 1972 Mar;125(3):257–262. doi: 10.1093/infdis/125.3.257. [DOI] [PubMed] [Google Scholar]
  16. Kinney R. M., Chang G. J., Tsuchiya K. R., Sneider J. M., Roehrig J. T., Woodward T. M., Trent D. W. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein. J Virol. 1993 Mar;67(3):1269–1277. doi: 10.1128/jvi.67.3.1269-1277.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kinney R. M., Johnson B. J., Welch J. B., Tsuchiya K. R., Trent D. W. The full-length nucleotide sequences of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and its attenuated vaccine derivative, strain TC-83. Virology. 1989 May;170(1):19–30. doi: 10.1016/0042-6822(89)90347-4. [DOI] [PubMed] [Google Scholar]
  18. Kuhn R. J., Griffin D. E., Zhang H., Niesters H. G., Strauss J. H. Attenuation of Sindbis virus neurovirulence by using defined mutations in nontranslated regions of the genome RNA. J Virol. 1992 Dec;66(12):7121–7127. doi: 10.1128/jvi.66.12.7121-7127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levine B., Griffin D. E. Molecular analysis of neurovirulent strains of Sindbis virus that evolve during persistent infection of scid mice. J Virol. 1993 Nov;67(11):6872–6875. doi: 10.1128/jvi.67.11.6872-6875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levine B., Hardwick J. M., Griffin D. E. Persistence of alphaviruses in vertebrate hosts. Trends Microbiol. 1994 Jan;2(1):25–28. doi: 10.1016/0966-842x(94)90341-7. [DOI] [PubMed] [Google Scholar]
  22. Levine B., Huang Q., Isaacs J. T., Reed J. C., Griffin D. E., Hardwick J. M. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature. 1993 Feb 25;361(6414):739–742. doi: 10.1038/361739a0. [DOI] [PubMed] [Google Scholar]
  23. Lewis J., Wesselingh S. L., Griffin D. E., Hardwick J. M. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol. 1996 Mar;70(3):1828–1835. doi: 10.1128/jvi.70.3.1828-1835.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li G. P., Rice C. M. Mutagenesis of the in-frame opal termination codon preceding nsP4 of Sindbis virus: studies of translational readthrough and its effect on virus replication. J Virol. 1989 Mar;63(3):1326–1337. doi: 10.1128/jvi.63.3.1326-1337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lin C., Chambers T. J., Rice C. M. Mutagenesis of conserved residues at the yellow fever virus 3/4A and 4B/5 dibasic cleavage sites: effects on cleavage efficiency and polyprotein processing. Virology. 1993 Feb;192(2):596–604. doi: 10.1006/viro.1993.1076. [DOI] [PubMed] [Google Scholar]
  26. Lustig S., Danenberg H. D., Kafri Y., Kobiler D., Ben-Nathan D. Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J Exp Med. 1992 Sep 1;176(3):707–712. doi: 10.1084/jem.176.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lustig S., Halevy M., Ben-Nathan D., Akov Y. A novel variant of Sindbis virus is both neurovirulent and neuroinvasive in adult mice. Arch Virol. 1992;122(3-4):237–248. doi: 10.1007/BF01317186. [DOI] [PubMed] [Google Scholar]
  28. Lustig S., Jackson A. C., Hahn C. S., Griffin D. E., Strauss E. G., Strauss J. H. Molecular basis of Sindbis virus neurovirulence in mice. J Virol. 1988 Jul;62(7):2329–2336. doi: 10.1128/jvi.62.7.2329-2336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Macadam A. J., Stone D. M., Almond J. W., Minor P. D. The 5' noncoding region and virulence of poliovirus vaccine strains. Trends Microbiol. 1994 Nov;2(11):449–454. doi: 10.1016/0966-842x(94)90803-6. [DOI] [PubMed] [Google Scholar]
  30. McKnight K. L., Simpson D. A., Lin S. C., Knott T. A., Polo J. M., Pence D. F., Johannsen D. B., Heidner H. W., Davis N. L., Johnston R. E. Deduced consensus sequence of Sindbis virus strain AR339: mutations contained in laboratory strains which affect cell culture and in vivo phenotypes. J Virol. 1996 Mar;70(3):1981–1989. doi: 10.1128/jvi.70.3.1981-1989.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Niesters H. G., Strauss J. H. Defined mutations in the 5' nontranslated sequence of Sindbis virus RNA. J Virol. 1990 Sep;64(9):4162–4168. doi: 10.1128/jvi.64.9.4162-4168.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ou J. H., Strauss E. G., Strauss J. H. The 5'-terminal sequences of the genomic RNAs of several alphaviruses. J Mol Biol. 1983 Jul 25;168(1):1–15. doi: 10.1016/s0022-2836(83)80319-2. [DOI] [PubMed] [Google Scholar]
  33. Pardigon N., Lenches E., Strauss J. H. Multiple binding sites for cellular proteins in the 3' end of Sindbis alphavirus minus-sense RNA. J Virol. 1993 Aug;67(8):5003–5011. doi: 10.1128/jvi.67.8.5003-5011.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pardigon N., Strauss J. H. Cellular proteins bind to the 3' end of Sindbis virus minus-strand RNA. J Virol. 1992 Feb;66(2):1007–1015. doi: 10.1128/jvi.66.2.1007-1015.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pardigon N., Strauss J. H. Mosquito homolog of the La autoantigen binds to Sindbis virus RNA. J Virol. 1996 Feb;70(2):1173–1181. doi: 10.1128/jvi.70.2.1173-1181.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pathak S., Webb H. E. Possible mechanisms for the transport of Semliki forest virus into and within mouse brain. An electron-microscopic study. J Neurol Sci. 1974 Oct;23(2):175–184. doi: 10.1016/0022-510x(74)90221-4. [DOI] [PubMed] [Google Scholar]
  37. Pierce J. S., Strauss E. G., Strauss J. H. Effect of ionic strength on the binding of Sindbis virus to chick cells. J Virol. 1974 May;13(5):1030–1036. doi: 10.1128/jvi.13.5.1030-1036.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Polo J. M., Davis N. L., Rice C. M., Huang H. V., Johnston R. E. Molecular analysis of Sindbis virus pathogenesis in neonatal mice by using virus recombinants constructed in vitro. J Virol. 1988 Jun;62(6):2124–2133. doi: 10.1128/jvi.62.6.2124-2133.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rice C. M., Grakoui A., Galler R., Chambers T. J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989 Dec;1(3):285–296. [PubMed] [Google Scholar]
  40. Rice C. M., Levis R., Strauss J. H., Huang H. V. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol. 1987 Dec;61(12):3809–3819. doi: 10.1128/jvi.61.12.3809-3819.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rice C. M., Strauss J. H. Synthesis, cleavage and sequence analysis of DNA complementary to the 26 S messenger RNA of Sindbis virus. J Mol Biol. 1981 Aug 15;150(3):315–340. doi: 10.1016/0022-2836(81)90550-7. [DOI] [PubMed] [Google Scholar]
  42. Russell D. L., Dalrymple J. M., Johnston R. E. Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice. J Virol. 1989 Apr;63(4):1619–1629. doi: 10.1128/jvi.63.4.1619-1629.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Soilu-Hänninen M., Erälinna J. P., Hukkanen V., Röyttä M., Salmi A. A., Salonen R. Semliki Forest virus infects mouse brain endothelial cells and causes blood-brain barrier damage. J Virol. 1994 Oct;68(10):6291–6298. doi: 10.1128/jvi.68.10.6291-6298.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strauss E. G., Lenches E. M., Strauss J. H. Mutants of sindbis virus. I. Isolation and partial characterization of 89 new temperature-sensitive mutants. Virology. 1976 Oct 1;74(1):154–168. doi: 10.1016/0042-6822(76)90137-9. [DOI] [PubMed] [Google Scholar]
  45. Strauss E. G., Rice C. M., Strauss J. H. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. 1984 Feb;133(1):92–110. doi: 10.1016/0042-6822(84)90428-8. [DOI] [PubMed] [Google Scholar]
  46. Strauss E. G., Stec D. S., Schmaljohn A. L., Strauss J. H. Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants. J Virol. 1991 Sep;65(9):4654–4664. doi: 10.1128/jvi.65.9.4654-4664.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. TAYLOR R. M., HURLBUT H. S., WORK T. H., KINGSTON J. R., FROTHINGHAM T. E. Sindbis virus: a newly recognized arthropodtransmitted virus. Am J Trop Med Hyg. 1955 Sep;4(5):844–862. doi: 10.4269/ajtmh.1955.4.844. [DOI] [PubMed] [Google Scholar]
  49. Tucker P. C., Griffin D. E. Mechanism of altered Sindbis virus neurovirulence associated with a single-amino-acid change in the E2 Glycoprotein. J Virol. 1991 Mar;65(3):1551–1557. doi: 10.1128/jvi.65.3.1551-1557.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tucker P. C., Strauss E. G., Kuhn R. J., Strauss J. H., Griffin D. E. Viral determinants of age-dependent virulence of Sindbis virus for mice. J Virol. 1993 Aug;67(8):4605–4610. doi: 10.1128/jvi.67.8.4605-4610.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ubol S., Griffin D. E. Identification of a putative alphavirus receptor on mouse neural cells. J Virol. 1991 Dec;65(12):6913–6921. doi: 10.1128/jvi.65.12.6913-6921.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ubol S., Tucker P. C., Griffin D. E., Hardwick J. M. Neurovirulent strains of Alphavirus induce apoptosis in bcl-2-expressing cells: role of a single amino acid change in the E2 glycoprotein. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5202–5206. doi: 10.1073/pnas.91.11.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Walter A. E., Turner D. H., Kim J., Lyttle M. H., Müller P., Mathews D. H., Zuker M. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218–9222. doi: 10.1073/pnas.91.20.9218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wang K. S., Schmaljohn A. L., Kuhn R. J., Strauss J. H. Antiidiotypic antibodies as probes for the Sindbis virus receptor. Virology. 1991 Apr;181(2):694–702. doi: 10.1016/0042-6822(91)90903-o. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES