Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):2881–2886. doi: 10.1128/jvi.71.4.2881-2886.1997

The NS3 proteinase domain of hepatitis C virus is a zinc-containing enzyme.

M Stempniak 1, Z Hostomska 1, B R Nodes 1, Z Hostomsky 1
PMCID: PMC191414  PMID: 9060645

Abstract

NS3 proteinase of hepatitis C virus (HCV), contained within the N-terminal domain of the NS3 protein, is a chymotrypsin-like serine proteinase responsible for processing of the nonstructural region of the HCV polyprotein. In this study, we examined the sensitivity of the NS3 proteinase to divalent metal ions, which is unusual behavior for this proteinase class. By using a cell-free coupled transcription-translation system, we found that HCV polyprotein processing can be activated by Zn2+ (and, to a lesser degree, by Cd2+, Pb2+, and Co2+) and inhibited by Cu2+ and Hg2+ ions. Elemental analysis of the purified NS3 proteinase domain revealed the presence of zinc in an equimolar ratio. The zinc content was unchanged in a mutated NS3 proteinase in which active-site residues His-57 and Ser-139 were replaced with Ala, suggesting that the zinc atom is not directly involved in catalysis but rather may have a structural role. Based on data from site-directed mutagenesis combined with zinc content determination, we propose that Cys-97, Cys-99, Cys-145, and His-149 coordinate the structural zinc in the HCV NS3 proteinase. A similar metal binding motif is found in 2A proteinases of enteroviruses and rhinoviruses, suggesting that these 2A proteinases and HCV NS3 proteinase are structurally related.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol. 1994 Aug;68(8):5045–5055. doi: 10.1128/jvi.68.8.5045-5055.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartenschlager R., Ahlborn-Laake L., Yasargil K., Mous J., Jacobsen H. Substrate determinants for cleavage in cis and in trans by the hepatitis C virus NS3 proteinase. J Virol. 1995 Jan;69(1):198–205. doi: 10.1128/jvi.69.1.198-205.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bazan J. F., Fletterick R. J. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology. 1989 Aug;171(2):637–639. doi: 10.1016/0042-6822(89)90639-9. [DOI] [PubMed] [Google Scholar]
  4. D'Souza E. D., Grace K., Sangar D. V., Rowlands D. J., Clarke B. E. In vitro cleavage of hepatitis C virus polyprotein substrates by purified recombinant NS3 protease. J Gen Virol. 1995 Jul;76(Pt 7):1729–1736. doi: 10.1099/0022-1317-76-7-1729. [DOI] [PubMed] [Google Scholar]
  5. Eckart M. R., Selby M., Masiarz F., Lee C., Berger K., Crawford K., Kuo C., Kuo G., Houghton M., Choo Q. L. The hepatitis C virus encodes a serine protease involved in processing of the putative nonstructural proteins from the viral polyprotein precursor. Biochem Biophys Res Commun. 1993 Apr 30;192(2):399–406. doi: 10.1006/bbrc.1993.1429. [DOI] [PubMed] [Google Scholar]
  6. Failla C., Tomei L., De Francesco R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol. 1994 Jun;68(6):3753–3760. doi: 10.1128/jvi.68.6.3753-3760.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res. 1989 May 25;17(10):3889–3897. doi: 10.1093/nar/17.10.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grakoui A., McCourt D. W., Wychowski C., Feinstone S. M., Rice C. M. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10583–10587. doi: 10.1073/pnas.90.22.10583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grakoui A., McCourt D. W., Wychowski C., Feinstone S. M., Rice C. M. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol. 1993 May;67(5):2832–2843. doi: 10.1128/jvi.67.5.2832-2843.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grakoui A., Wychowski C., Lin C., Feinstone S. M., Rice C. M. Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol. 1993 Mar;67(3):1385–1395. doi: 10.1128/jvi.67.3.1385-1395.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hahm B., Han D. S., Back S. H., Song O. K., Cho M. J., Kim C. J., Shimotohno K., Jang S. K. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J Virol. 1995 Apr;69(4):2534–2539. doi: 10.1128/jvi.69.4.2534-2539.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Han D. S., Hahm B., Rho H. M., Jang S. K. Identification of the protease domain in NS3 of hepatitis C virus. J Gen Virol. 1995 Apr;76(Pt 4):985–993. doi: 10.1099/0022-1317-76-4-985. [DOI] [PubMed] [Google Scholar]
  13. Higaki J. N., Haymore B. L., Chen S., Fletterick R. J., Craik C. S. Regulation of serine protease activity by an engineered metal switch. Biochemistry. 1990 Sep 18;29(37):8582–8586. doi: 10.1021/bi00489a012. [DOI] [PubMed] [Google Scholar]
  14. Hijikata M., Mizushima H., Akagi T., Mori S., Kakiuchi N., Kato N., Tanaka T., Kimura K., Shimotohno K. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol. 1993 Aug;67(8):4665–4675. doi: 10.1128/jvi.67.8.4665-4675.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hijikata M., Mizushima H., Tanji Y., Komoda Y., Hirowatari Y., Akagi T., Kato N., Kimura K., Shimotohno K. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10773–10777. doi: 10.1073/pnas.90.22.10773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kato N., Hijikata M., Ootsuyama Y., Nakagawa M., Ohkoshi S., Sugimura T., Shimotohno K. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9524–9528. doi: 10.1073/pnas.87.24.9524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., van der Werf S. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981 Jun 18;291(5816):547–553. doi: 10.1038/291547a0. [DOI] [PubMed] [Google Scholar]
  18. Lin C., Prágai B. M., Grakoui A., Xu J., Rice C. M. Hepatitis C virus NS3 serine proteinase: trans-cleavage requirements and processing kinetics. J Virol. 1994 Dec;68(12):8147–8157. doi: 10.1128/jvi.68.12.8147-8157.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lin C., Rice C. M. The hepatitis C virus NS3 serine proteinase and NS4A cofactor: establishment of a cell-free trans-processing assay. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7622–7626. doi: 10.1073/pnas.92.17.7622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linnen J., Wages J., Jr, Zhang-Keck Z. Y., Fry K. E., Krawczynski K. Z., Alter H., Koonin E., Gallagher M., Alter M., Hadziyannis S. Molecular cloning and disease association of hepatitis G virus: a transfusion-transmissible agent. Science. 1996 Jan 26;271(5248):505–508. doi: 10.1126/science.271.5248.505. [DOI] [PubMed] [Google Scholar]
  21. Love R. A., Parge H. E., Wickersham J. A., Hostomsky Z., Habuka N., Moomaw E. W., Adachi T., Hostomska Z. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell. 1996 Oct 18;87(2):331–342. doi: 10.1016/s0092-8674(00)81350-1. [DOI] [PubMed] [Google Scholar]
  22. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell. 1994 Jun 3;77(5):761–771. doi: 10.1016/0092-8674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  23. Menge K. L., Hostomsky Z., Nodes B. R., Hudson G. O., Rahmati S., Moomaw E. W., Almassy R. J., Hostomska Z. Structure-function analysis of the mammalian DNA polymerase beta active site: role of aspartic acid 256, arginine 254, and arginine 258 in nucleotidyl transfer. Biochemistry. 1995 Dec 12;34(49):15934–15942. doi: 10.1021/bi00049a008. [DOI] [PubMed] [Google Scholar]
  24. Miller R. H., Purcell R. H. Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2057–2061. doi: 10.1073/pnas.87.6.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mori A., Yamada K., Kimura J., Koide T., Yuasa S., Yamada E., Miyamura T. Enzymatic characterization of purified NS3 serine proteinase of hepatitis C virus expressed in Escherichia coli. FEBS Lett. 1996 Jan 2;378(1):37–42. doi: 10.1016/0014-5793(95)01423-3. [DOI] [PubMed] [Google Scholar]
  26. Ohba K., Mizokami M., Lau J. Y., Orito E., Ikeo K., Gojobori T. Evolutionary relationship of hepatitis C, pesti-, flavi-, plantviruses, and newly discovered GB hepatitis agents. FEBS Lett. 1996 Jan 15;378(3):232–234. doi: 10.1016/0014-5793(95)01441-1. [DOI] [PubMed] [Google Scholar]
  27. Reed K. E., Grakoui A., Rice C. M. Hepatitis C virus-encoded NS2-3 protease: cleavage-site mutagenesis and requirements for bimolecular cleavage. J Virol. 1995 Jul;69(7):4127–4136. doi: 10.1128/jvi.69.7.4127-4136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robbins A. H., McRee D. E., Williamson M., Collett S. A., Xuong N. H., Furey W. F., Wang B. C., Stout C. D. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol. 1991 Oct 20;221(4):1269–1293. [PubMed] [Google Scholar]
  29. Simons J. N., Leary T. P., Dawson G. J., Pilot-Matias T. J., Muerhoff A. S., Schlauder G. G., Desai S. M., Mushahwar I. K. Isolation of novel virus-like sequences associated with human hepatitis. Nat Med. 1995 Jun;1(6):564–569. doi: 10.1038/nm0695-564. [DOI] [PubMed] [Google Scholar]
  30. Skern T., Sommergruber W., Blaas D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res. 1985 Mar 25;13(6):2111–2126. doi: 10.1093/nar/13.6.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sommergruber W., Casari G., Fessl F., Seipelt J., Skern T. The 2A proteinase of human rhinovirus is a zinc containing enzyme. Virology. 1994 Nov 1;204(2):815–818. doi: 10.1006/viro.1994.1599. [DOI] [PubMed] [Google Scholar]
  32. Tanji Y., Hijikata M., Satoh S., Kaneko T., Shimotohno K. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J Virol. 1995 Mar;69(3):1575–1581. doi: 10.1128/jvi.69.3.1575-1581.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tomei L., Failla C., Santolini E., De Francesco R., La Monica N. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol. 1993 Jul;67(7):4017–4026. doi: 10.1128/jvi.67.7.4017-4026.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Voss T., Meyer R., Sommergruber W. Spectroscopic characterization of rhinoviral protease 2A: Zn is essential for the structural integrity. Protein Sci. 1995 Dec;4(12):2526–2531. doi: 10.1002/pro.5560041209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yu S. F., Lloyd R. E. Characterization of the roles of conserved cysteine and histidine residues in poliovirus 2A protease. Virology. 1992 Feb;186(2):725–735. doi: 10.1016/0042-6822(92)90039-r. [DOI] [PubMed] [Google Scholar]
  36. Zack D. J., Stempniak M., Wong A. L., Weisbart R. H. Localization of an Fc-binding reactivity to the constant region of human IgG4. Implications for the pathogenesis of rheumatoid arthritis. J Immunol. 1995 Nov 15;155(10):5057–5063. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES