Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):2921–2927. doi: 10.1128/jvi.71.4.2921-2927.1997

Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model.

T R Kreil 1, M M Eibl 1
PMCID: PMC191419  PMID: 9060650

Abstract

Antibody-dependent enhancement of flavivirus infection, which except for dengue virus is without clear proof in vivo, is still under debate. Recently, postexposure immunoglobulin prophylaxis against tick-borne encephalitis virus, a flavivirus, was claimed to possibly have worsened the outcome of infection due to antibody-dependent enhancement. In the present study, antibody-dependent enhancement and pre- or postexposure protection by passive administration of tick-borne encephalitis virus immunoglobulin were evaluated in a mouse model. Preexposure treatment with homologous murine or heterologous human immunoglobulin provided complete protection against lethal challenge with tick-borne encephalitis virus. For postexposure treatment with antibody, the degree of protection correlated with the amount of immunoglobulin administered and was inversely related to the time interval between infection and treatment. Indications of enhancement of infection would have been increased lethality or reduced mean survival time, but neither was observed under the conditions used in our experiments despite the broad range of immunoglobulin and virus challenge doses applied. In contrast to these in vivo results, antibody-dependent enhancement of tick-borne encephalitis virus infection of murine peritoneal macrophages was readily demonstrable in vitro. Thus, antibody-dependent enhancement of viral infection in vitro does not necessarily predict enhancement in vivo.

Full Text

The Full Text of this article is available as a PDF (213.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi C., Schaad U. B. FSME-Immunglobulin--eine kritische Beurteilung der Wirksamkeit. Schweiz Med Wochenschr. 1994 Oct 22;124(42):1837–1840. [PubMed] [Google Scholar]
  2. Albrecht P. Pathogenesis of neurotropic arbovirus infections. Curr Top Microbiol Immunol. 1968;43:44–91. doi: 10.1007/978-3-642-46118-7_2. [DOI] [PubMed] [Google Scholar]
  3. Barrett A. D., Gould E. A. Antibody-mediated early death in vivo after infection with yellow fever virus. J Gen Virol. 1986 Nov;67(Pt 11):2539–2542. doi: 10.1099/0022-1317-67-11-2539. [DOI] [PubMed] [Google Scholar]
  4. Brandriss M. W., Schlesinger J. J., Walsh E. E., Briselli M. Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J Gen Virol. 1986 Feb;67(Pt 2):229–234. doi: 10.1099/0022-1317-67-2-229. [DOI] [PubMed] [Google Scholar]
  5. Camenga D. L., Nathanson N., Cole G. A. Cyclophosphamide-potentiated West Nile viral encephalitis: relative influence of cellular and humoral factors. J Infect Dis. 1974 Dec;130(6):634–641. doi: 10.1093/infdis/130.6.634. [DOI] [PubMed] [Google Scholar]
  6. Castell D. O., Richter J. E. Editorial: esophageal symptoms and the "irritable esophagus". Dysphagia. 1987;2(2):109–111. doi: 10.1007/BF02408142. [DOI] [PubMed] [Google Scholar]
  7. De Madrid A. T., Porterfield J. S. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ. 1969;40(1):113–121. [PMC free article] [PubMed] [Google Scholar]
  8. Dolin R., Graham B. S., Greenberg S. B., Tacket C. O., Belshe R. B., Midthun K., Clements M. L., Gorse G. J., Horgan B. W., Atmar R. L. The safety and immunogenicity of a human immunodeficiency virus type 1 (HIV-1) recombinant gp160 candidate vaccine in humans. NIAID AIDS Vaccine Clinical Trials Network. Ann Intern Med. 1991 Jan 15;114(2):119–127. doi: 10.7326/0003-4819-114-2-119. [DOI] [PubMed] [Google Scholar]
  9. Gould E. A., Buckley A. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J Gen Virol. 1989 Jun;70(Pt 6):1605–1608. doi: 10.1099/0022-1317-70-6-1605. [DOI] [PubMed] [Google Scholar]
  10. Gould E. A., Buckley A., Barrett A. D., Cammack N. Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. J Gen Virol. 1986 Mar;67(Pt 3):591–595. doi: 10.1099/0022-1317-67-3-591. [DOI] [PubMed] [Google Scholar]
  11. Halstead S. B. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis. 1989 May-Jun;11 (Suppl 4):S830–S839. doi: 10.1093/clinids/11.supplement_4.s830. [DOI] [PubMed] [Google Scholar]
  12. Heinz F. X., Berger R., Tuma W., Kunz C. A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology. 1983 Apr 30;126(2):525–537. doi: 10.1016/s0042-6822(83)80010-5. [DOI] [PubMed] [Google Scholar]
  13. Heinz F. X., Kunz C., Fauma H. Preparation of a highly purified vaccine against tick-borne encephalitis by continuous flow zonal ultracentrifugation. J Med Virol. 1980;6(3):213–221. doi: 10.1002/jmv.1890060304. [DOI] [PubMed] [Google Scholar]
  14. Heinz F. X., Tuma W., Kunz C. Antigenic and immunogenic properties of defined physical forms of tick-borne encephalitis virus structural proteins. Infect Immun. 1981 Jul;33(1):250–257. doi: 10.1128/iai.33.1.250-257.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holzmann H., Kundi M., Stiasny K., Clement J., McKenna P., Kunz C., Heinz F. X. Correlation between ELISA, hemagglutination inhibition, and neutralization tests after vaccination against tick-borne encephalitis. J Med Virol. 1996 Jan;48(1):102–107. doi: 10.1002/(SICI)1096-9071(199601)48:1<102::AID-JMV16>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  16. Jacobs S. C., Stephenson J. R., Wilkinson G. W. Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus non-structural glycoprotein NS1. J Gen Virol. 1994 Sep;75(Pt 9):2399–2402. doi: 10.1099/0022-1317-75-9-2399. [DOI] [PubMed] [Google Scholar]
  17. KOVAC W., MORITSCH H. Zur Pathogenese der Infektion der Maus mit dem Virus der menschlichen Frühsommer-Meningoencephalitis. Zentralbl Bakteriol Orig. 1959 Apr;174(5-6):440–456. [PubMed] [Google Scholar]
  18. Kluger G., Schöttler A., Waldvogel K., Nadal D., Hinrichs W., Wündisch G. F., Laub M. C. Tickborne encephalitis despite specific immunoglobulin prophylaxis. Lancet. 1995 Dec 2;346(8988):1502–1502. doi: 10.1016/s0140-6736(95)92527-9. [DOI] [PubMed] [Google Scholar]
  19. Kopecký J., Grubhoffer L., Tomková E. Interaction of tick/borne encephalitis virus with mouse peritoneal macrophages. The effect of antiviral antibody and lectin. Acta Virol. 1991 May;35(3):218–225. [PubMed] [Google Scholar]
  20. Kunz C., Heinz F. X., Hofmann H. Immunogenicity and reactogenicity of a highly purified vaccine against tick-borne encephalitis. J Med Virol. 1980;6(2):103–109. doi: 10.1002/jmv.1890060202. [DOI] [PubMed] [Google Scholar]
  21. Kunz C., Hofmann H., Kundi M., Mayer K. Zur Wirksamkeit von FSME-Immunoglobulin. Wien Klin Wochenschr. 1981 Nov 13;93(21):665–667. [PubMed] [Google Scholar]
  22. Montefiori D. C., Pantaleo G., Fink L. M., Zhou J. T., Zhou J. Y., Bilska M., Miralles G. D., Fauci A. S. Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. J Infect Dis. 1996 Jan;173(1):60–67. doi: 10.1093/infdis/173.1.60. [DOI] [PubMed] [Google Scholar]
  23. Niedrig M., Klockmann U., Lang W., Roeder J., Burk S., Modrow S., Pauli G. Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol. 1994 Jun;38(3):141–149. [PubMed] [Google Scholar]
  24. Peiris J. S., Gordon S., Unkeless J. C., Porterfield J. S. Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Nature. 1981 Jan 15;289(5794):189–191. doi: 10.1038/289189a0. [DOI] [PubMed] [Google Scholar]
  25. Phillpotts R. J., Stephenson J. R., Porterfield J. S. Antibody-dependent enhancement of tick-borne encephalitis virus infectivity. J Gen Virol. 1985 Aug;66(Pt 8):1831–1837. doi: 10.1099/0022-1317-66-8-1831. [DOI] [PubMed] [Google Scholar]
  26. Phillpotts R. J., Stephenson J. R., Porterfield J. S. Passive immunization of mice with monoclonal antibodies raised against tick-borne encephalitis virus. Brief report. Arch Virol. 1987;93(3-4):295–301. doi: 10.1007/BF01310983. [DOI] [PubMed] [Google Scholar]
  27. Ravetch J. V., Kinet J. P. Fc receptors. Annu Rev Immunol. 1991;9:457–492. doi: 10.1146/annurev.iy.09.040191.002325. [DOI] [PubMed] [Google Scholar]
  28. Takeda A., Tuazon C. U., Ennis F. A. Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science. 1988 Oct 28;242(4878):580–583. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES