Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):2928–2933. doi: 10.1128/jvi.71.4.2928-2933.1997

Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS.

I Teo 1, C Veryard 1, H Barnes 1, S F An 1, M Jones 1, P L Lantos 1, P Luthert 1, S Shaunak 1
PMCID: PMC191420  PMID: 9060651

Abstract

Thirty-one histologically abnormal brains from patients with AIDS were studied in order to establish the relationship between multinucleated giant cells, viral protein expression, the various forms of human immunodeficiency virus type 1 (HIV-1) DNA, and clinical evidence of dementia. Unintegrated HIV-1 DNA of 2 to 8 kb was found in 22 of the 31 brains. Multinucleated giant cells without any other pathology were found in 14 cases; unintegrated 1-long terminal repeat (1-LTR) circular forms of HIV-1 DNA and strongly positive immunohistochemistry for gp41 and p24 were found in most of these brains. Most of these patients had a clinical diagnosis of HIV-1-associated dementia and cerebral atrophy. In all the other brains studied, 1-LTR circles were absent and immunohistochemistry for gp41 and p24 was usually negative. Very few of these patients had a clinical diagnosis of dementia. Sequence comparison of the LTR region from integrated HIV-1 DNA with that from unintegrated 1-LTR circular forms of HIV-1 DNA in 12 cases showed no significant differences. A further comparison of these brain-derived LTR sequences with LTR sequences derived directly from lymphoid tissue also showed strong sequence conservation. The V3 loop of the virus from the brain was sequenced in 6 cases and had a non-syncytium inducing-macrophage-tropic genotype. Our results show that (i) although unintegrated HIV-1 DNA was present in most brains from patients with AIDS, molecular evidence of high levels of viral replication was associated with the presence of multinucleated giant cells and dementia, and that (ii) the HIV-1 LTR is not a determinant of neurotropism. These observations suggest that replication of HIV-1 and not just the presence of HIV-1 DNA within giant cells makes the important contribution to central nervous system damage.

Full Text

The Full Text of this article is available as a PDF (206.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ait-Khaled M., McLaughlin J. E., Johnson M. A., Emery V. C. Distinct HIV-1 long terminal repeat quasispecies present in nervous tissues compared to that in lung, blood and lymphoid tissues of an AIDS patient. AIDS. 1995 Jul;9(7):675–683. doi: 10.1097/00002030-199507000-00002. [DOI] [PubMed] [Google Scholar]
  2. Bell J. E., Busuttil A., Ironside J. W., Rebus S., Donaldson Y. K., Simmonds P., Peutherer J. F. Human immunodeficiency virus and the brain: investigation of virus load and neuropathologic changes in pre-AIDS subjects. J Infect Dis. 1993 Oct;168(4):818–824. doi: 10.1093/infdis/168.4.818. [DOI] [PubMed] [Google Scholar]
  3. Bell J. E., Donaldson Y. K., Lowrie S., McKenzie C. A., Elton R. A., Chiswick A., Brettle R. P., Ironside J. W., Simmonds P. Influence of risk group and zidovudine therapy on the development of HIV encephalitis and cognitive impairment in AIDS patients. AIDS. 1996 May;10(5):493–499. doi: 10.1097/00002030-199605000-00007. [DOI] [PubMed] [Google Scholar]
  4. Berman M. A., Zaldivar F., Jr, Imfeld K. L., Kenney J. S., Sandborg C. I. HIV-1 infection of macrophages promotes long-term survival and sustained release of interleukins 1 alpha and 6. AIDS Res Hum Retroviruses. 1994 May;10(5):529–539. doi: 10.1089/aid.1994.10.529. [DOI] [PubMed] [Google Scholar]
  5. Budka H., Wiley C. A., Kleihues P., Artigas J., Asbury A. K., Cho E. S., Cornblath D. R., Dal Canto M. C., DeGirolami U., Dickson D. HIV-associated disease of the nervous system: review of nomenclature and proposal for neuropathology-based terminology. Brain Pathol. 1991 Apr;1(3):143–152. doi: 10.1111/j.1750-3639.1991.tb00653.x. [DOI] [PubMed] [Google Scholar]
  6. Burns D. K., Risser R. C., White C. L., 3rd The neuropathology of human immunodeficiency virus infection. The Dallas, Texas, experience. Arch Pathol Lab Med. 1991 Nov;115(11):1112–1124. [PubMed] [Google Scholar]
  7. Böni J., Emmerich B. S., Leib S. L., Wiestler O. D., Schüpbach J., Kleihues P. PCR identification of HIV-1 DNA sequences in brain tissue of patients with AIDS encephalopathy. Neurology. 1993 Sep;43(9):1813–1817. doi: 10.1212/wnl.43.9.1813. [DOI] [PubMed] [Google Scholar]
  8. Cara A., Guarnaccia F., Reitz M. S., Gallo R. C., Lori F. Self-limiting, cell type-dependent replication of an integrase-defective human immunodeficiency virus type 1 in human primary macrophages but not T lymphocytes. Virology. 1995 Apr 1;208(1):242–248. doi: 10.1006/viro.1995.1148. [DOI] [PubMed] [Google Scholar]
  9. Corboy J. R., Buzy J. M., Zink M. C., Clements J. E. Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science. 1992 Dec 11;258(5089):1804–1808. doi: 10.1126/science.1465618. [DOI] [PubMed] [Google Scholar]
  10. Di Stefano M., Wilt S., Gray F., Dubois-Dalcq M., Chiodi F. HIV type 1 V3 sequences and the development of dementia during AIDS. AIDS Res Hum Retroviruses. 1996 Apr 10;12(6):471–476. doi: 10.1089/aid.1996.12.471. [DOI] [PubMed] [Google Scholar]
  11. Donaldson Y. K., Bell J. E., Holmes E. C., Hughes E. S., Brown H. K., Simmonds P. In vivo distribution and cytopathology of variants of human immunodeficiency virus type 1 showing restricted sequence variability in the V3 loop. J Virol. 1994 Sep;68(9):5991–6005. doi: 10.1128/jvi.68.9.5991-6005.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eilbott D. J., Peress N., Burger H., LaNeve D., Orenstein J., Gendelman H. E., Seidman R., Weiser B. Human immunodeficiency virus type 1 in spinal cords of acquired immunodeficiency syndrome patients with myelopathy: expression and replication in macrophages. Proc Natl Acad Sci U S A. 1989 May;86(9):3337–3341. doi: 10.1073/pnas.86.9.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Englund G., Theodore T. S., Freed E. O., Engelman A., Martin M. A. Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J Virol. 1995 May;69(5):3216–3219. doi: 10.1128/jvi.69.5.3216-3219.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frankel S. S., Wenig B. M., Burke A. P., Mannan P., Thompson L. D., Abbondanzo S. L., Nelson A. M., Pope M., Steinman R. M. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science. 1996 Apr 5;272(5258):115–117. doi: 10.1126/science.272.5258.115. [DOI] [PubMed] [Google Scholar]
  15. Gray F., Geny C., Lionnet F., Dournon E., Fenelon G., Gherardi R., Poirier J. Etude neuropathologique de 135 cas adultes de syndrome d'immuno-déficience acquise (SIDA). Ann Pathol. 1991;11(4):236–247. [PubMed] [Google Scholar]
  16. Hahn B. H., Shaw G. M., Arya S. K., Popovic M., Gallo R. C., Wong-Staal F. Molecular cloning and characterization of the HTLV-III virus associated with AIDS. Nature. 1984 Nov 8;312(5990):166–169. doi: 10.1038/312166a0. [DOI] [PubMed] [Google Scholar]
  17. Heinzinger N. K., Bukrinsky M. I., Haggerty S. A., Ragland A. M., Kewalramani V., Lee M. A., Gendelman H. E., Ratner L., Stevenson M., Emerman M. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7311–7315. doi: 10.1073/pnas.91.15.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ioannidis J. P., Reichlin S., Skolnik P. R. Long-term productive human immunodeficiency virus-1 infection in human infant microglia. Am J Pathol. 1995 Nov;147(5):1200–1206. [PMC free article] [PubMed] [Google Scholar]
  19. Jurriaans S., de Ronde A., Dekker J., Goudsmit J., Cornelissen M. Analysis of human immunodeficiency virus type 1 LTR-LTR junctions in peripheral blood mononuclear cells of infected individuals. J Gen Virol. 1992 Jun;73(Pt 6):1537–1541. doi: 10.1099/0022-1317-73-6-1537. [DOI] [PubMed] [Google Scholar]
  20. Koenig S., Gendelman H. E., Orenstein J. M., Dal Canto M. C., Pezeshkpour G. H., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986 Sep 5;233(4768):1089–1093. doi: 10.1126/science.3016903. [DOI] [PubMed] [Google Scholar]
  21. Koyanagi Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H. V., Chen I. S. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. doi: 10.1126/science.3646751. [DOI] [PubMed] [Google Scholar]
  22. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  23. Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Neurology. 1991 Jun;41(6):778–785. doi: 10.1212/wnl.41.6.778. [DOI] [PubMed] [Google Scholar]
  24. O'Brien W. A., Koyanagi Y., Namazie A., Zhao J. Q., Diagne A., Idler K., Zack J. A., Chen I. S. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature. 1990 Nov 1;348(6296):69–73. doi: 10.1038/348069a0. [DOI] [PubMed] [Google Scholar]
  25. Ou C. Y., Kwok S., Mitchell S. W., Mack D. H., Sninsky J. J., Krebs J. W., Feorino P., Warfield D., Schochetman G. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988 Jan 15;239(4837):295–297. doi: 10.1126/science.3336784. [DOI] [PubMed] [Google Scholar]
  26. Pang S., Koyanagi Y., Miles S., Wiley C., Vinters H. V., Chen I. S. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990 Jan 4;343(6253):85–89. doi: 10.1038/343085a0. [DOI] [PubMed] [Google Scholar]
  27. Pauza C. D., Galindo J. Persistent human immunodeficiency virus type 1 infection of monoblastoid cells leads to accumulation of self-integrated viral DNA and to production of defective virions. J Virol. 1989 Sep;63(9):3700–3707. doi: 10.1128/jvi.63.9.3700-3707.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Power C., McArthur J. C., Johnson R. T., Griffin D. E., Glass J. D., Perryman S., Chesebro B. Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J Virol. 1994 Jul;68(7):4643–4649. doi: 10.1128/jvi.68.7.4643-4649.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ratner L., Fisher A., Jagodzinski L. L., Mitsuya H., Liou R. S., Gallo R. C., Wong-Staal F. Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Res Hum Retroviruses. 1987 Spring;3(1):57–69. doi: 10.1089/aid.1987.3.57. [DOI] [PubMed] [Google Scholar]
  30. Reddy R. T., Achim C. L., Sirko D. A., Tehranchi S., Kraus F. G., Wong-Staal F., Wiley C. A. Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res Hum Retroviruses. 1996 Apr 10;12(6):477–482. doi: 10.1089/aid.1996.12.477. [DOI] [PubMed] [Google Scholar]
  31. Shaunak S., Albright R. E., Klotman M. E., Henry S. C., Bartlett J. A., Hamilton J. D. Amplification of HIV-1 provirus from cerebrospinal fluid and its correlation with neurologic disease. J Infect Dis. 1990 Jun;161(6):1068–1072. doi: 10.1093/infdis/161.6.1068. [DOI] [PubMed] [Google Scholar]
  32. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop J. O., Brown A. J. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol. 1990 Feb;64(2):864–872. doi: 10.1128/jvi.64.2.864-872.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sonza S., Kiernan R. E., Maerz A. L., Deacon N. J., McPhee D. A., Crowe S. M. Accumulation of unintegrated circular viral DNA in monocytes and growth-arrested T cells following infection with HIV-1. J Leukoc Biol. 1994 Sep;56(3):289–293. doi: 10.1002/jlb.56.3.289. [DOI] [PubMed] [Google Scholar]
  34. Stevenson M., Haggerty S., Lamonica C. A., Meier C. M., Welch S. K., Wasiak A. J. Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. J Virol. 1990 May;64(5):2421–2425. doi: 10.1128/jvi.64.5.2421-2425.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stevenson M., Zhang X. H., Volsky D. J. Downregulation of cell surface molecules during noncytopathic infection of T cells with human immunodeficiency virus. J Virol. 1987 Dec;61(12):3741–3748. doi: 10.1128/jvi.61.12.3741-3748.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Toggas S. M., Masliah E., Rockenstein E. M., Rall G. F., Abraham C. R., Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994 Jan 13;367(6459):188–193. doi: 10.1038/367188a0. [DOI] [PubMed] [Google Scholar]
  37. Ulvestad E., Williams K., Bjerkvig R., Tiekotter K., Antel J., Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol. 1994 Dec;56(6):732–740. doi: 10.1002/jlb.56.6.732. [DOI] [PubMed] [Google Scholar]
  38. Wiley C. A., Achim C. Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol. 1994 Oct;36(4):673–676. doi: 10.1002/ana.410360422. [DOI] [PubMed] [Google Scholar]
  39. Wiskerchen M., Muesing M. A. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol. 1995 Jan;69(1):376–386. doi: 10.1128/jvi.69.1.376-386.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES