Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):2959–2969. doi: 10.1128/jvi.71.4.2959-2969.1997

Evolution of mouse hepatitis virus: detection and characterization of spike deletion variants during persistent infection.

C L Rowe 1, S C Baker 1, M J Nathan 1, J O Fleming 1
PMCID: PMC191424  PMID: 9060655

Abstract

High-frequency RNA recombination has been proposed as an important mechanism for generating viral deletion variants of murine coronavirus. Indeed, a number of variants with deletions in the spike glycoprotein have been isolated from persistently infected animals. However, the significance of generating and potentially accumulating deletion variants in the persisting viral RNA population is unclear. To study this issue, we evaluated the evolution of spike variants by examining the population of spike RNA sequences detected in the brains and spinal cords of mice inoculated with coronavirus and sacrificed at 4, 42, or 100 days postinoculation. We focused on the S1 hypervariable region since previous investigators had shown that this region is subject to recombination and deletion. RNA isolated from the brains or spinal cords of infected mice was rescued by reverse transcription-PCR, and the amplified products were cloned and used in differential colony hybridizations to identify individual isolates with deletions. We found that 11 of 20 persistently infected mice harbored spike deletion variants (SDVs), indicating that deletions are common but not required for persistent infection. To determine if a specific type of SDV accumulated during persistence, we sequenced 106 of the deletion isolates. We identified 23 distinct patterns of SDVs, including 5 double-deletion variants. Furthermore, we found that each mouse harbored distinct variants in its central nervous system (CNS), suggesting that SDVs are generated during viral replication in the CNS. Interestingly, mice with the most severe and persisting neurological disease harbored the most prevalent and diverse quasispecies of SDVs. Overall, these findings illustrate the complexity of the population of persisting viral RNAs which may contribute to chronic disease.

Full Text

The Full Text of this article is available as a PDF (205.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adami C., Pooley J., Glomb J., Stecker E., Fazal F., Fleming J. O., Baker S. C. Evolution of mouse hepatitis virus (MHV) during chronic infection: quasispecies nature of the persisting MHV RNA. Virology. 1995 Jun 1;209(2):337–346. doi: 10.1006/viro.1995.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banner L. R., Keck J. G., Lai M. M. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology. 1990 Apr;175(2):548–555. doi: 10.1016/0042-6822(90)90439-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banner L. R., Lai M. M. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology. 1991 Nov;185(1):441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergmann C. C., Yao Q., Lin M., Stohlman S. A. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J Gen Virol. 1996 Feb;77(Pt 2):315–325. doi: 10.1099/0022-1317-77-2-315. [DOI] [PubMed] [Google Scholar]
  5. Bertoletti A., Sette A., Chisari F. V., Penna A., Levrero M., De Carli M., Fiaccadori F., Ferrari C. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature. 1994 Jun 2;369(6479):407–410. doi: 10.1038/369407a0. [DOI] [PubMed] [Google Scholar]
  6. Castro R. F., Perlman S. CD8+ T-cell epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity. J Virol. 1995 Dec;69(12):8127–8131. doi: 10.1128/jvi.69.12.8127-8131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang S. Y., Shih A., Kwok S. Detection of variability in natural populations of viruses by polymerase chain reaction. Methods Enzymol. 1993;224:428–438. doi: 10.1016/0076-6879(93)24033-q. [DOI] [PubMed] [Google Scholar]
  8. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell--cell fusion. Virology. 1982 Jun;119(2):358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Couillin I., Culmann-Penciolelli B., Gomard E., Choppin J., Levy J. P., Guillet J. G., Saragosti S. Impaired cytotoxic T lymphocyte recognition due to genetic variations in the main immunogenic region of the human immunodeficiency virus 1 NEF protein. J Exp Med. 1994 Sep 1;180(3):1129–1134. doi: 10.1084/jem.180.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalziel R. G., Lampert P. W., Talbot P. J., Buchmeier M. J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J Virol. 1986 Aug;59(2):463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Domingo E., Escarmis C., Martinez M. A., Martinez-Salas E., Mateu M. G. Foot-and-mouth disease virus populations are quasispecies. Curr Top Microbiol Immunol. 1992;176:33–47. doi: 10.1007/978-3-642-77011-1_3. [DOI] [PubMed] [Google Scholar]
  12. Duarte E. A., Novella I. S., Weaver S. C., Domingo E., Wain-Hobson S., Clarke D. K., Moya A., Elena S. F., de la Torre J. C., Holland J. J. RNA virus quasispecies: significance for viral disease and epidemiology. Infect Agents Dis. 1994 Aug;3(4):201–214. [PubMed] [Google Scholar]
  13. Eigen M. The origin of genetic information: viruses as models. Gene. 1993 Dec 15;135(1-2):37–47. doi: 10.1016/0378-1119(93)90047-7. [DOI] [PubMed] [Google Scholar]
  14. Fazakerley J. K., Buchmeier M. J. Pathogenesis of virus-induced demyelination. Adv Virus Res. 1993;42:249–324. doi: 10.1016/S0065-3527(08)60087-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fazakerley J. K., Parker S. E., Bloom F., Buchmeier M. J. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology. 1992 Mar;187(1):178–188. doi: 10.1016/0042-6822(92)90306-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fleming J. O., Adami C., Pooley J., Glomb J., Stecker E., Fazal F., Baker S. C. Mutations associated with viral sequences isolated from mice persistently infected with MHV-JHM. Adv Exp Med Biol. 1995;380:591–595. doi: 10.1007/978-1-4615-1899-0_94. [DOI] [PubMed] [Google Scholar]
  17. Fleming J. O., Pen L. B. Measurement of the concentration of murine IgG monoclonal antibody in hybridoma supernatants and ascites in absolute units by sensitive and reliable enzyme-linked immunosorbent assays (ELISA). J Immunol Methods. 1988 May 25;110(1):11–18. doi: 10.1016/0022-1759(88)90077-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fleming J. O., Trousdale M. D., Bradbury J., Stohlman S. A., Weiner L. P. Experimental demyelination induced by coronavirus JHM (MHV-4): molecular identification of a viral determinant of paralytic disease. Microb Pathog. 1987 Jul;3(1):9–20. doi: 10.1016/0882-4010(87)90033-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fleming J. O., Trousdale M. D., el-Zaatari F. A., Stohlman S. A., Weiner L. P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol. 1986 Jun;58(3):869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fleming J. O., Wang F. I., Trousdale M. D., Hinton D. R., Stohlman S. A. Interaction of immune and central nervous systems: contribution of anti-viral Thy-1+ cells to demyelination induced by coronavirus JHM. Reg Immunol. 1993 Jan-Feb;5(1):37–43. [PubMed] [Google Scholar]
  21. Gallagher T. M., Parker S. E., Buchmeier M. J. Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. J Virol. 1990 Feb;64(2):731–741. doi: 10.1128/jvi.64.2.731-741.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jackson D. P., Percy D. H., Morris V. L. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis. Virology. 1984 Sep;137(2):297–304. doi: 10.1016/0042-6822(84)90221-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jarvis T. C., Kirkegaard K. Poliovirus RNA recombination: mechanistic studies in the absence of selection. EMBO J. 1992 Aug;11(8):3135–3145. doi: 10.1002/j.1460-2075.1992.tb05386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keck J. G., Matsushima G. K., Makino S., Fleming J. O., Vannier D. M., Stohlman S. A., Lai M. M. In vivo RNA-RNA recombination of coronavirus in mouse brain. J Virol. 1988 May;62(5):1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klenerman P., Rowland-Jones S., McAdam S., Edwards J., Daenke S., Lalloo D., Köppe B., Rosenberg W., Boyd D., Edwards A. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature. 1994 Jun 2;369(6479):403–407. doi: 10.1038/369403a0. [DOI] [PubMed] [Google Scholar]
  27. Kodama T., Mori K., Kawahara T., Ringler D. J., Desrosiers R. C. Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J Virol. 1993 Nov;67(11):6522–6534. doi: 10.1128/jvi.67.11.6522-6534.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. La Monica N., Banner L. R., Morris V. L., Lai M. M. Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronavirus JHM. Virology. 1991 Jun;182(2):883–888. doi: 10.1016/0042-6822(91)90635-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lavi E., Gilden D. H., Highkin M. K., Weiss S. R. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab Anim Sci. 1986 Apr;36(2):130–135. [PubMed] [Google Scholar]
  31. Li Y., Ball L. A. Nonhomologous RNA recombination during negative-strand synthesis of flock house virus RNA. J Virol. 1993 Jul;67(7):3854–3860. doi: 10.1128/jvi.67.7.3854-3860.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A., Horzinek M. C., Spaan W. J. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987 Dec;161(2):479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Makino S., Keck J. G., Stohlman S. A., Lai M. M. High-frequency RNA recombination of murine coronaviruses. J Virol. 1986 Mar;57(3):729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Makino S., Taguchi F., Hayami M., Fujiwara K. Characterization of small plaque mutants of mouse hepatitis virus, JHM strain. Microbiol Immunol. 1983;27(5):445–454. doi: 10.1111/j.1348-0421.1983.tb00603.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Martell M., Esteban J. I., Quer J., Genescà J., Weiner A., Esteban R., Guardia J., Gómez J. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol. 1992 May;66(5):3225–3229. doi: 10.1128/jvi.66.5.3225-3229.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morris V. L., Tieszer C., Mackinnon J., Percy D. Characterization of coronavirus JHM variants isolated from Wistar Furth rats with a viral-induced demyelinating disease. Virology. 1989 Mar;169(1):127–136. doi: 10.1016/0042-6822(89)90048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Moskophidis D., Zinkernagel R. M. Immunobiology of cytotoxic T-cell escape mutants of lymphocytic choriomeningitis virus. J Virol. 1995 Apr;69(4):2187–2193. doi: 10.1128/jvi.69.4.2187-2193.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nowak M. A., May R. M., Phillips R. E., Rowland-Jones S., Lalloo D. G., McAdam S., Klenerman P., Köppe B., Sigmund K., Bangham C. R. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature. 1995 Jun 15;375(6532):606–611. doi: 10.1038/375606a0. [DOI] [PubMed] [Google Scholar]
  39. Parker S. E., Gallagher T. M., Buchmeier M. J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989 Dec;173(2):664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pewe L., Wu G. F., Barnett E. M., Castro R. F., Perlman S. Cytotoxic T cell-resistant variants are selected in a virus-induced demyelinating disease. Immunity. 1996 Sep;5(3):253–262. doi: 10.1016/s1074-7613(00)80320-9. [DOI] [PubMed] [Google Scholar]
  41. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmidt I., Skinner M., Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J Gen Virol. 1987 Jan;68(Pt 1):47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  44. Stohlman S. A., Weiner L. P. Chronic central nervous system demyelination in mice after JHM virus infection. Neurology. 1981 Jan;31(1):38–44. doi: 10.1212/wnl.31.1.38. [DOI] [PubMed] [Google Scholar]
  45. Sturman L. S., Ricard C. S., Holmes K. V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol. 1985 Dec;56(3):904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taguchi F., Ikeda T., Shida H. Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant cl-2. J Gen Virol. 1992 May;73(Pt 5):1065–1072. doi: 10.1099/0022-1317-73-5-1065. [DOI] [PubMed] [Google Scholar]
  47. Taguchi F., Kubo H., Takahashi H., Suzuki H. Localization of neurovirulence determinant for rats on the S1 subunit of murine coronavirus JHMV. Virology. 1995 Apr 1;208(1):67–74. doi: 10.1006/viro.1995.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang F. I., Fleming J. O., Lai M. M. Sequence analysis of the spike protein gene of murine coronavirus variants: study of genetic sites affecting neuropathogenicity. Virology. 1992 Feb;186(2):742–749. doi: 10.1016/0042-6822(92)90041-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wege H., Koga M., Watanabe R., Nagashima K., ter Meulen V. Neurovirulence of murine coronavirus JHM temperature-sensitive mutants in rats. Infect Immun. 1983 Mar;39(3):1316–1324. doi: 10.1128/iai.39.3.1316-1324.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wege H., Winter J., Meyermann R. The peplomer protein E2 of coronavirus JHM as a determinant of neurovirulence: definition of critical epitopes by variant analysis. J Gen Virol. 1988 Jan;69(Pt 1):87–98. doi: 10.1099/0022-1317-69-1-87. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES