Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):3083–3089. doi: 10.1128/jvi.71.4.3083-3089.1997

Disulfide bond formation is a determinant of glycosylation site usage in the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus.

L W McGinnes 1, T G Morrison 1
PMCID: PMC191439  PMID: 9060670

Abstract

Determinants of glycosylation site usage were explored by using the hemagglutinin-neuraminidase (HN) glycoprotein of the paramyxovirus Newcastle disease virus. The amino acid sequence of the HN protein, a type II glycoprotein, has six N-linked glycosylation addition sites, G1 to G6, two of which, G5 and G6, are not used for the addition of carbohydrate (L. McGinnes and T. Morrison, Virology 212:398-410, 1995). The sequence of this protein also has 13 cysteine residues in the ectodomain (C2 to C14). Mutation of either cysteine 13 or cysteine 14 resulted in the addition of another oligosaccharide chain to the protein. These cysteine residues flank the normally unused G6 glycosylation addition site, and mutation of the G6 site eliminated the extra glycosylation found in the cysteine mutants. These results suggested that failure to form an intramolecular disulfide bond resulted in the usage of a normally unused glycosylation site. This conclusion was confirmed by preventing cotranslational disulfide bond formation in cells by using dithiothreitol. Under these conditions, the wild-type protein acquired extra glycosylation, which was eliminated by mutation of the G6 site. These results suggest that localized folding events on the nascent chain, such as disulfide bond formation, which block access to the oligosaccharyl transferase are a determinant of glycosylation site usage.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S., Naim H. Y., Bulleid N. J. Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J Biol Chem. 1995 Mar 3;270(9):4797–4804. doi: 10.1074/jbc.270.9.4797. [DOI] [PubMed] [Google Scholar]
  2. Altmann S. W., Johnson G. D., Prystowsky M. B. Single proline substitutions in predicted alpha-helices of murine granulocyte-macrophage colony-stimulating factor result in a loss in bioactivity and altered glycosylation. J Biol Chem. 1991 Mar 15;266(8):5333–5341. [PubMed] [Google Scholar]
  3. Braakman I., Helenius J., Helenius A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 1992 May;11(5):1717–1722. doi: 10.1002/j.1460-2075.1992.tb05223.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colman P. M., Hoyne P. A., Lawrence M. C. Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol. 1993 Jun;67(6):2972–2980. doi: 10.1128/jvi.67.6.2972-2980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilmore R. Protein translocation across the endoplasmic reticulum: a tunnel with toll booths at entry and exit. Cell. 1993 Nov 19;75(4):589–592. doi: 10.1016/0092-8674(93)90476-7. [DOI] [PubMed] [Google Scholar]
  6. Iorio R. M., Glickman R. L., Riel A. M., Sheehan J. P., Bratt M. A. Functional and neutralization profile of seven overlapping antigenic sites on the HN glycoprotein of Newcastle disease virus: monoclonal antibodies to some sites prevent viral attachment. Virus Res. 1989 Jul;13(3):245–261. doi: 10.1016/0168-1702(89)90019-1. [DOI] [PubMed] [Google Scholar]
  7. Iorio R. M., Glickman R. L., Sheehan J. P. Inhibition of fusion by neutralizing monoclonal antibodies to the haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Gen Virol. 1992 May;73(Pt 5):1167–1176. doi: 10.1099/0022-1317-73-5-1167. [DOI] [PubMed] [Google Scholar]
  8. Iorio R. M., Syddall R. J., Glickman R. L., Riel A. M., Sheehan J. P., Bratt M. A. Identification of amino acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle disease virus. Virology. 1989 Nov;173(1):196–204. doi: 10.1016/0042-6822(89)90235-3. [DOI] [PubMed] [Google Scholar]
  9. Iorio R. M., Syddall R. J., Sheehan J. P., Bratt M. A., Glickman R. L., Riel A. M. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. J Virol. 1991 Sep;65(9):4999–5006. doi: 10.1128/jvi.65.9.4999-5006.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim J. W., Cunningham J. M. N-linked glycosylation of the receptor for murine ecotropic retroviruses is altered in virus-infected cells. J Biol Chem. 1993 Aug 5;268(22):16316–16320. [PubMed] [Google Scholar]
  11. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  12. Livi G. P., Lillquist J. S., Miles L. M., Ferrara A., Sathe G. M., Simon P. L., Meyers C. A., Gorman J. A., Young P. R. Secretion of N-glycosylated interleukin-1 beta in Saccharomyces cerevisiae using a leader peptide from Candida albicans. Effect of N-linked glycosylation on biological activity. J Biol Chem. 1991 Aug 15;266(23):15348–15355. [PubMed] [Google Scholar]
  13. Lodish H. F., Kong N. The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum. J Biol Chem. 1993 Sep 25;268(27):20598–20605. [PubMed] [Google Scholar]
  14. Lévesque J. P., Sansilvestri P., Hatzfeld A., Hatzfeld J. DNA transfection in COS cells: a low-cost serum-free method compared to lipofection. Biotechniques. 1991 Sep;11(3):313-4, 316-8. [PubMed] [Google Scholar]
  15. McGinnes L. W., Morrison T. G. Conformationally sensitive antigenic determinants on the HN glycoprotein of Newcastle disease virus form with different kinetics. Virology. 1994 Mar;199(2):255–264. doi: 10.1006/viro.1994.1123. [DOI] [PubMed] [Google Scholar]
  16. McGinnes L. W., Morrison T. G. Role of cotranslational disulfide bond formation in the folding of the hemagglutinin-neuraminidase protein of Newcastle disease virus. Virology. 1996 Oct 15;224(2):465–476. doi: 10.1006/viro.1996.0553. [DOI] [PubMed] [Google Scholar]
  17. McGinnes L. W., Morrison T. G. The role of individual oligosaccharide chains in the activities of the HN glycoprotein of Newcastle disease virus. Virology. 1995 Oct 1;212(2):398–410. doi: 10.1006/viro.1995.1497. [DOI] [PubMed] [Google Scholar]
  18. McGinnes L. W., Morrison T. G. The role of the individual cysteine residues in the formation of the mature, antigenic HN protein of Newcastle disease virus. Virology. 1994 May 1;200(2):470–483. doi: 10.1006/viro.1994.1210. [DOI] [PubMed] [Google Scholar]
  19. McGinnes L. W., Wilde A., Morrison T. G. Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin-neuraminidase protein and comparisons of paramyxovirus hemagglutinin-neuraminidase protein sequences. Virus Res. 1987 May;7(3):187–202. doi: 10.1016/0168-1702(87)90027-x. [DOI] [PubMed] [Google Scholar]
  20. McGinnes L., Sergel T., Morrison T. Mutations in the transmembrane domain of the HN protein of Newcastle disease virus affect the structure and activity of the protein. Virology. 1993 Sep;196(1):101–110. doi: 10.1006/viro.1993.1458. [DOI] [PubMed] [Google Scholar]
  21. Mirza A. M., Sheehan J. P., Hardy L. W., Glickman R. L., Iorio R. M. Structure and function of a membrane anchor-less form of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Biol Chem. 1993 Oct 5;268(28):21425–21431. [PubMed] [Google Scholar]
  22. Morrison T. G., McGinnes L. W. Avian cells expressing the Newcastle disease virus hemagglutinin-neuraminidase protein are resistant to Newcastle disease virus infection. Virology. 1989 Jul;171(1):10–17. doi: 10.1016/0042-6822(89)90505-9. [DOI] [PubMed] [Google Scholar]
  23. Morrison T. G., McQuain C., O'Connell K. F., McGinnes L. W. Mature, cell-associated HN protein of Newcastle disease virus exists in two forms differentiated by posttranslational modifications. Virus Res. 1990 Feb;15(2):113–133. doi: 10.1016/0168-1702(90)90003-t. [DOI] [PubMed] [Google Scholar]
  24. Morrison T., McQuain C., McGinnes L. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion. J Virol. 1991 Feb;65(2):813–822. doi: 10.1128/jvi.65.2.813-822.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morrison T., Ward L. J., Semerjian A. Intracellular processing of the Newcastle disease virus fusion glycoprotein. J Virol. 1985 Mar;53(3):851–857. doi: 10.1128/jvi.53.3.851-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nilsson I. M., von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem. 1993 Mar 15;268(8):5798–5801. [PubMed] [Google Scholar]
  27. Schwalbe J. C., Hightower L. E. Maturation of the envelope glycoproteins of Newcastle disease virus on cellular membranes. J Virol. 1982 Mar;41(3):947–957. doi: 10.1128/jvi.41.3.947-957.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sergel T., McGinnes L. W., Peeples M. E., Morrison T. G. The attachment function of the Newcastle disease virus hemagglutinin-neuraminidase protein can be separated from fusion promotion by mutation. Virology. 1993 Apr;193(2):717–726. doi: 10.1006/viro.1993.1180. [DOI] [PubMed] [Google Scholar]
  29. Tatu U., Braakman I., Helenius A. Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. EMBO J. 1993 May;12(5):2151–2157. doi: 10.1002/j.1460-2075.1993.tb05863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES