Abstract
In two children with an accumulation of guanidinoacetate in brain and a deficiency of creatine in blood, a severe deficiency of guanidinoacetate methyltransferase (GAMT) activity was detected in the liver. Two mutant GAMT alleles were identified that carried a single base substitution within a 5' splice site or a 13-nt insertion and gave rise to four mutant transcripts. Three of the transcripts encode truncated polypeptides that lack a residue known to be critical for catalytic activity of GAMT. Deficiency of GAMT is the first inborn error of creatine metabolism. It causes a severe developmental delay and extrapyramidal symptoms in early infancy and is treatable by oral substitution with creatine.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CANTONI G. L., VIGNOS P. J., Jr Enzymatic mechanism of creatine synthesis. J Biol Chem. 1954 Aug;209(2):647–659. [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Im Y. S., Cantoni G. L., Chiang P. K. A radioactive assay for guanidoacetate methyltransferase. Anal Biochem. 1979 May;95(1):87–88. doi: 10.1016/0003-2697(79)90189-1. [DOI] [PubMed] [Google Scholar]
- Isbrandt D., von Figura K. Cloning and sequence analysis of human guanidinoacetate N-methyltransferase cDNA. Biochim Biophys Acta. 1995 Dec 27;1264(3):265–267. doi: 10.1016/0167-4781(95)00184-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McGuire D. M., Gross M. D., Van Pilsum J. F., Towle H. C. Repression of rat kidney L-arginine:glycine amidinotransferase synthesis by creatine at a pretranslational level. J Biol Chem. 1984 Oct 10;259(19):12034–12038. [PubMed] [Google Scholar]
- Mudd S. H., Poole J. R. Labile methyl balances for normal humans on various dietary regimens. Metabolism. 1975 Jun;24(6):721–735. doi: 10.1016/0026-0495(75)90040-2. [DOI] [PubMed] [Google Scholar]
- Ogawa H., Fujioka M. Nucleotide sequence of the rat guanidinoacetate methyltransferase gene. Nucleic Acids Res. 1988 Sep 12;16(17):8715–8716. doi: 10.1093/nar/16.17.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa H., Ishiguro Y., Fujioka M. Guanidoacetate methyltransferase from rat liver: purification, properties, and evidence for the involvement of sulfhydryl groups for activity. Arch Biochem Biophys. 1983 Oct 1;226(1):265–275. doi: 10.1016/0003-9861(83)90293-x. [DOI] [PubMed] [Google Scholar]
- Stöckler S., Holzbach U., Hanefeld F., Marquardt I., Helms G., Requart M., Hänicke W., Frahm J. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res. 1994 Sep;36(3):409–413. doi: 10.1203/00006450-199409000-00023. [DOI] [PubMed] [Google Scholar]
- Takata Y., Konishi K., Gomi T., Fujioka M. Rat guanidinoacetate methyltransferase. Effect of site-directed alteration of an aspartic acid residue that is conserved across most mammalian S-adenosylmethionine-dependent methyltransferases. J Biol Chem. 1994 Feb 25;269(8):5537–5542. [PubMed] [Google Scholar]
- Walker J. B. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242. doi: 10.1002/9780470122952.ch4. [DOI] [PubMed] [Google Scholar]
- Weber S., Aebi M. In vitro splicing of mRNA precursors: 5' cleavage site can be predicted from the interaction between the 5' splice region and the 5' terminus of U1 snRNA. Nucleic Acids Res. 1988 Jan 25;16(2):471–486. doi: 10.1093/nar/16.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wing R. R., Carrol C., Jeffrey R. W. Repeated observation of obese and normal subjects eating in the natural environment. Addict Behav. 1978;3(3-4):191–196. doi: 10.1016/0306-4603(78)90018-7. [DOI] [PubMed] [Google Scholar]
- Zhuang Y., Weiner A. M. A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell. 1986 Sep 12;46(6):827–835. doi: 10.1016/0092-8674(86)90064-4. [DOI] [PubMed] [Google Scholar]