Abstract
Two prominent features distinguish hepatitis A virus (HAV) from other members of the picornavirus family. A C-terminally prolonged precursor of the structural protein VP1 is incorporated into assembly intermediates (e.g., the provirion), and a single proteinase is contained within the HAV polyprotein. Using an in vivo expression system, we show that proteolytic liberation of VP1 from its precursors P1-2A and VP1-2A is catalyzed by the virus-encoded proteinase 3Cpro. Among the proposed cleavage sites within VP1-2A, the Glu/Ser pair found at VP1 amino acid position 273/274 of most HAV strains is efficiently processed, whereas proteolysis of the Val/Ser site of the attenuated HM175 strain is protracted. Two mutations within VP1-2A (Lys[297]Arg and Ser[330]Asn) had no effect on 3Cpro-mediated cleavage at this site. Additional sites in this region of VP1-2A can also be utilized as substrates by the proteinase, yet less efficiently, and might give rise to smaller and larger VP1 polypeptides also detected in HAV-infected cells.
Full Text
The Full Text of this article is available as a PDF (210.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. A., Ross B. C. Morphogenesis of hepatitis A virus: isolation and characterization of subviral particles. J Virol. 1990 Nov;64(11):5284–5289. doi: 10.1128/jvi.64.11.5284-5289.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boege U., Scraba D. G. Mengo virus maturation is accompanied by C-terminal modification of capsid protein VP1. Virology. 1989 Feb;168(2):409–412. doi: 10.1016/0042-6822(89)90284-5. [DOI] [PubMed] [Google Scholar]
- Cho M. W., Ehrenfeld E. Rapid completion of the replication cycle of hepatitis A virus subsequent to reversal of guanidine inhibition. Virology. 1991 Feb;180(2):770–780. doi: 10.1016/0042-6822(91)90090-x. [DOI] [PubMed] [Google Scholar]
- Cohen J. I., Ticehurst J. R., Purcell R. H., Buckler-White A., Baroudy B. M. Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. J Virol. 1987 Jan;61(1):50–59. doi: 10.1128/jvi.61.1.50-59.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dotzauer A., Vallbracht A., Keil G. M. The proposed gene for VP1 of HAV encodes for a larger protein than that observed in HAV-infected cells and virions. Virology. 1995 Nov 10;213(2):671–675. doi: 10.1006/viro.1995.0040. [DOI] [PubMed] [Google Scholar]
- Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elroy-Stein O., Fuerst T. R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerson S. U., Lewis M., Govindarajan S., Shapiro M., Moskal T., Purcell R. H. cDNA clone of hepatitis A virus encoding a virulent virus: induction of viral hepatitis by direct nucleic acid transfection of marmosets. J Virol. 1992 Nov;66(11):6649–6654. doi: 10.1128/jvi.66.11.6649-6654.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauss-Müller V., Lottspeich F., Deinhardt F. Characterization of hepatitis A virus structural proteins. Virology. 1986 Dec;155(2):732–736. doi: 10.1016/0042-6822(86)90234-5. [DOI] [PubMed] [Google Scholar]
- Gosert R., Cassinotti P., Siegl G., Weitz M. Identification of hepatitis A virus non-structural protein 2B and its release by the major virus protease 3C. J Gen Virol. 1996 Feb;77(Pt 2):247–255. doi: 10.1099/0022-1317-77-2-247. [DOI] [PubMed] [Google Scholar]
- Harmon S. A., Emerson S. U., Huang Y. K., Summers D. F., Ehrenfeld E. Hepatitis A viruses with deletions in the 2A gene are infectious in cultured cells and marmosets. J Virol. 1995 Sep;69(9):5576–5581. doi: 10.1128/jvi.69.9.5576-5581.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harmon S. A., Richards O. C., Summers D. F., Ehrenfeld E. The 5'-terminal nucleotides of hepatitis A virus RNA, but not poliovirus RNA, are required for infectivity. J Virol. 1991 May;65(5):2757–2760. doi: 10.1128/jvi.65.5.2757-2760.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jewell D. A., Swietnicki W., Dunn B. M., Malcolm B. A. Hepatitis A virus 3C proteinase substrate specificity. Biochemistry. 1992 Sep 1;31(34):7862–7869. doi: 10.1021/bi00149a017. [DOI] [PubMed] [Google Scholar]
- Jia X. Y., Ehrenfeld E., Summers D. F. Proteolytic activity of hepatitis A virus 3C protein. J Virol. 1991 May;65(5):2595–2600. doi: 10.1128/jvi.65.5.2595-2600.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia X. Y., Summers D. F., Ehrenfeld E. Primary cleavage of the HAV capsid protein precursor in the middle of the proposed 2A coding region. Virology. 1993 Mar;193(1):515–519. doi: 10.1006/viro.1993.1157. [DOI] [PubMed] [Google Scholar]
- Jürgensen D., Kusov Y. Y., Fäcke M., Kräusslich H. G., Gauss-Müller V. Cell-free translation and proteolytic processing of the hepatitis A virus polyprotein. J Gen Virol. 1993 Apr;74(Pt 4):677–683. doi: 10.1099/0022-1317-74-4-677. [DOI] [PubMed] [Google Scholar]
- Kusov YYu, Kazachkov Y. A., Dzagurov G. K., Khozinskaya G. A., Balayan M. S., Gauss-Müller V. Identification of precursors of structural proteins VP1 and VP2 of hepatitis A virus. J Med Virol. 1992 Jul;37(3):220–227. doi: 10.1002/jmv.1890370313. [DOI] [PubMed] [Google Scholar]
- Malcolm B. A., Chin S. M., Jewell D. A., Stratton-Thomas J. R., Thudium K. B., Ralston R., Rosenberg S. Expression and characterization of recombinant hepatitis A virus 3C proteinase. Biochemistry. 1992 Apr 7;31(13):3358–3363. doi: 10.1021/bi00128a008. [DOI] [PubMed] [Google Scholar]
- Martin A., Escriou N., Chao S. F., Girard M., Lemon S. M., Wychowski C. Identification and site-directed mutagenesis of the primary (2A/2B) cleavage site of the hepatitis A virus polyprotein: functional impact on the infectivity of HAV RNA transcripts. Virology. 1995 Oct 20;213(1):213–222. doi: 10.1006/viro.1995.1561. [DOI] [PubMed] [Google Scholar]
- Palmenberg A. C. Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol. 1990;44:603–623. doi: 10.1146/annurev.mi.44.100190.003131. [DOI] [PubMed] [Google Scholar]
- Schultheiss T., Kusov Y. Y., Gauss-Müller V. Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology. 1994 Jan;198(1):275–281. doi: 10.1006/viro.1994.1030. [DOI] [PubMed] [Google Scholar]
- Schultheiss T., Sommergruber W., Kusov Y., Gauss-Müller V. Cleavage specificity of purified recombinant hepatitis A virus 3C proteinase on natural substrates. J Virol. 1995 Mar;69(3):1727–1733. doi: 10.1128/jvi.69.3.1727-1733.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tesar M., Jia X. Y., Summers D. F., Ehrenfeld E. Analysis of a potential myristoylation site in hepatitis A virus capsid protein VP4. Virology. 1993 Jun;194(2):616–626. doi: 10.1006/viro.1993.1301. [DOI] [PubMed] [Google Scholar]
- Wilk T., Mierswa H., Kräusslich H. G., Dunn J. J., Bosch V. Expression of biologically active HIV glycoproteins using a T7 RNA polymerase-based eucaryotic vector system. Virus Genes. 1992 Aug;6(3):229–246. doi: 10.1007/BF01702562. [DOI] [PubMed] [Google Scholar]