Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):3357–3362. doi: 10.1128/jvi.71.4.3357-3362.1997

Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection.

T Ito 1, Y Suzuki 1, A Takada 1, A Kawamoto 1, K Otsuki 1, H Masuda 1, M Yamada 1, T Suzuki 1, H Kida 1, Y Kawaoka 1
PMCID: PMC191479  PMID: 9060710

Abstract

Human influenza viruses are more efficiently isolated by inoculating patient samples into the amniotic rather than the allantoic cavity of embryonated chicken eggs. This type of cultivation selects virus variants with mutations around the hemagglutinin (HA) receptor binding site. To understand the molecular basis of these phenomena, we investigated the abundances of sialic acid (SA) linked to galactose (Gal) by the alpha-2,3 linkage (SA alpha2,3Gal) and SA alpha2,6Gal in egg amniotic and allantoic cells and in Madin-Darby canine kidney (MDCK) cells. Using SA-Gal linkage-specific lectins (Maackia amurensis agglutinin specific for SA alpha2,6Gal and Sambucus nigra agglutinin specific for SA alpha2,3Gal), we found SA alpha2,3Gal in both allantoic and amniotic cells and SA alpha2,6Gal in only the amniotic cells. MDCK cells contained both linkages. To investigate how this difference in abundances of SA alpha2,3Gal and SA alpha2,6Gal in allantoic and amniotic cells affects the appearance of host cell variants in eggs, we determined the receptor specificities and HA amino acid sequences of two different patient viruses which were isolated and passaged in the amnion or in the allantois and which were compared with MDCK cell-grown viruses. We found that the viruses maintained high SA alpha2,6Gal specificities when grown in MDCK cells or following up to two amniotic passages; however, further passages in either the amnion or allantois resulted in the acquisition of, or a complete shift to, SA alpha2,3Gal specificity, depending on the virus strain. This change in receptor specificity was accompanied by the appearance of variants in the population with Leu-to-Gln mutations at position 226 in their HA. These findings suggest that lack of SA alpha2,6Gal linkages in the allantois of chicken eggs is a selective pressure for the appearance of host cell variants with altered receptor specificities and amino acid changes at position 226.

Full Text

The Full Text of this article is available as a PDF (188.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum L. G., Paulson J. C. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl. 1990;40:35–38. [PubMed] [Google Scholar]
  2. Bean W. J., Jr, Sriram G., Webster R. G. Electrophoretic analysis of iodine-labeled influenza virus RNA segments. Anal Biochem. 1980 Feb;102(1):228–232. doi: 10.1016/0003-2697(80)90343-7. [DOI] [PubMed] [Google Scholar]
  3. Connor R. J., Kawaoka Y., Webster R. G., Paulson J. C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994 Nov 15;205(1):17–23. doi: 10.1006/viro.1994.1615. [DOI] [PubMed] [Google Scholar]
  4. Daniels P. S., Jeffries S., Yates P., Schild G. C., Rogers G. N., Paulson J. C., Wharton S. A., Douglas A. R., Skehel J. J., Wiley D. C. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J. 1987 May;6(5):1459–1465. doi: 10.1002/j.1460-2075.1987.tb02387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hardy C. T., Young S. A., Webster R. G., Naeve C. W., Owens R. J. Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses. Virology. 1995 Aug 1;211(1):302–306. doi: 10.1006/viro.1995.1405. [DOI] [PubMed] [Google Scholar]
  6. Herrler G., Klenk H. D. The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology. 1987 Jul;159(1):102–108. doi: 10.1016/0042-6822(87)90352-7. [DOI] [PubMed] [Google Scholar]
  7. Ilobi C. P., Henfrey R., Robertson J. S., Mumford J. A., Erasmus B. J., Wood J. M. Antigenic and molecular characterization of host cell-mediated variants of equine H3N8 influenza viruses. J Gen Virol. 1994 Mar;75(Pt 3):669–673. doi: 10.1099/0022-1317-75-3-669. [DOI] [PubMed] [Google Scholar]
  8. Inkster M. D., Hinshaw V. S., Schulze I. T. The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. J Virol. 1993 Dec;67(12):7436–7443. doi: 10.1128/jvi.67.12.7436-7443.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Itoh M., Wang X. L., Suzuki Y., Homma M. Mutation of the HANA protein of Sendai virus by passage in eggs. Virology. 1992 Sep;190(1):356–364. doi: 10.1016/0042-6822(92)91222-g. [DOI] [PubMed] [Google Scholar]
  10. Katz J. M., Naeve C. W., Webster R. G. Host cell-mediated variation in H3N2 influenza viruses. Virology. 1987 Feb;156(2):386–395. doi: 10.1016/0042-6822(87)90418-1. [DOI] [PubMed] [Google Scholar]
  11. Katz J. M., Wang M., Webster R. G. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol. 1990 Apr;64(4):1808–1811. doi: 10.1128/jvi.64.4.1808-1811.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz J. M., Webster R. G. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J Gen Virol. 1992 May;73(Pt 5):1159–1165. doi: 10.1099/0022-1317-73-5-1159. [DOI] [PubMed] [Google Scholar]
  13. Katz J. M., Webster R. G. Antigenic and structural characterization of multiple subpopulations of H3N2 influenza virus from an individual. Virology. 1988 Aug;165(2):446–456. doi: 10.1016/0042-6822(88)90588-0. [DOI] [PubMed] [Google Scholar]
  14. Kida H., Brown L. E., Webster R. G. Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Virology. 1982 Oct 15;122(1):38–47. doi: 10.1016/0042-6822(82)90375-0. [DOI] [PubMed] [Google Scholar]
  15. Robertson J. S., Bootman J. S., Newman R., Oxford J. S., Daniels R. S., Webster R. G., Schild G. C. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology. 1987 Sep;160(1):31–37. doi: 10.1016/0042-6822(87)90040-7. [DOI] [PubMed] [Google Scholar]
  16. Robertson J. S., Bootman J. S., Nicolson C., Major D., Robertson E. W., Wood J. M. The hemagglutinin of influenza B virus present in clinical material is a single species identical to that of mammalian cell-grown virus. Virology. 1990 Nov;179(1):35–40. doi: 10.1016/0042-6822(90)90270-2. [DOI] [PubMed] [Google Scholar]
  17. Robertson J. S., Naeve C. W., Webster R. G., Bootman J. S., Newman R., Schild G. C. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology. 1985 May;143(1):166–174. doi: 10.1016/0042-6822(85)90105-9. [DOI] [PubMed] [Google Scholar]
  18. Robertson J. S., Nicolson C., Bootman J. S., Major D., Robertson E. W., Wood J. M. Sequence analysis of the haemagglutinin (HA) of influenza A (H1N1) viruses present in clinical material and comparison with the HA of laboratory-derived virus. J Gen Virol. 1991 Nov;72(Pt 11):2671–2677. doi: 10.1099/0022-1317-72-11-2671. [DOI] [PubMed] [Google Scholar]
  19. Robertson J. S., Nicolson C., Major D., Robertson E. W., Wood J. M. The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J Gen Virol. 1993 Oct;74(Pt 10):2047–2051. doi: 10.1099/0022-1317-74-10-2047. [DOI] [PubMed] [Google Scholar]
  20. Rogers G. N., Daniels R. S., Skehel J. J., Wiley D. C., Wang X. F., Higa H. H., Paulson J. C. Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2,3Gal-specific wild type in ovo. J Biol Chem. 1985 Jun 25;260(12):7362–7367. [PubMed] [Google Scholar]
  21. Rogers G. N., Herrler G., Paulson J. C., Klenk H. D. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J Biol Chem. 1986 May 5;261(13):5947–5951. [PubMed] [Google Scholar]
  22. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983 Jul 7;304(5921):76–78. doi: 10.1038/304076a0. [DOI] [PubMed] [Google Scholar]
  23. Rogers G. N., Paulson J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983 Jun;127(2):361–373. doi: 10.1016/0042-6822(83)90150-2. [DOI] [PubMed] [Google Scholar]
  24. SEVER J. L. Application of a microtechnique to viral serological investigations. J Immunol. 1962 Mar;88:320–329. [PubMed] [Google Scholar]
  25. Suzuki Y., Kato H., Naeve C. W., Webster R. G. Single-amino-acid substitution in an antigenic site of influenza virus hemagglutinin can alter the specificity of binding to cell membrane-associated gangliosides. J Virol. 1989 Oct;63(10):4298–4302. doi: 10.1128/jvi.63.10.4298-4302.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Suzuki Y., Nakao T., Ito T., Watanabe N., Toda Y., Xu G., Suzuki T., Kobayashi T., Kimura Y., Yamada A. Structural determination of gangliosides that bind to influenza A, B, and C viruses by an improved binding assay: strain-specific receptor epitopes in sialo-sugar chains. Virology. 1992 Jul;189(1):121–131. doi: 10.1016/0042-6822(92)90687-k. [DOI] [PubMed] [Google Scholar]
  27. Vlasak R., Krystal M., Nacht M., Palese P. The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology. 1987 Oct;160(2):419–425. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
  28. Wang M. L., Katz J. M., Webster R. G. Extensive heterogeneity in the hemagglutinin of egg-grown influenza viruses from different patients. Virology. 1989 Jul;171(1):275–279. doi: 10.1016/0042-6822(89)90538-2. [DOI] [PubMed] [Google Scholar]
  29. Williams S. P., Robertson J. S. Analysis of the restriction to the growth of nonegg-adapted human influenza virus in eggs. Virology. 1993 Oct;196(2):660–665. doi: 10.1006/viro.1993.1522. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES