Abstract
Several different methods for linkage analysis are shown to arise from a single likelihood function L for the observed allele-sharing data at multiple markers in a chromosomal region. These include classical parametric lod score methods, nonparametric or "model-free" affected pedigree-member (APM) methods, and the Gaussian process method. Setting the methods in the context of the likelihood function L clarifies their underlying assumptions. A test statistic derived from L, the efficient score statistic, is introduced. It is asymptotically equivalent to the lod score, but it can be easier to compute when the penetrances and frequencies of alleles of the trait gene are not known. APM test statistics and the Gaussian lod score are shown to be special cases of efficient score statistics. This unified framework facilitates exploration of a range of models for the effects of a putative trait-predisposing gene, and it facilitates sensitivity analyses to examine the consequences of model misspecification.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackwelder W. C., Elston R. C. A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol. 1985;2(1):85–97. doi: 10.1002/gepi.1370020109. [DOI] [PubMed] [Google Scholar]
- Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
- Curtis D., Sham P. C. Model-free linkage analysis using likelihoods. Am J Hum Genet. 1995 Sep;57(3):703–716. [PMC free article] [PubMed] [Google Scholar]
- Ewens W. J., Shute N. C. A resolution of the ascertainment sampling problem. I. Theory. Theor Popul Biol. 1986 Dec;30(3):388–412. doi: 10.1016/0040-5809(86)90042-0. [DOI] [PubMed] [Google Scholar]
- Feingold E., Brown P. O., Siegmund D. Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am J Hum Genet. 1993 Jul;53(1):234–251. [PMC free article] [PubMed] [Google Scholar]
- Guo S. W. Proportion of genome shared identical by descent by relatives: concept, computation, and applications. Am J Hum Genet. 1995 Jun;56(6):1468–1476. [PMC free article] [PubMed] [Google Scholar]
- Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motro U., Thomson G. The affected sib method. I. Statistical features of the affected sib-pair method. Genetics. 1985 Jul;110(3):525–538. doi: 10.1093/genetics/110.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connell J. R., Weeks D. E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet. 1995 Dec;11(4):402–408. doi: 10.1038/ng1295-402. [DOI] [PubMed] [Google Scholar]
- Schaid D. J., Nick T. G. Sib-pair linkage tests for disease susceptibility loci: common tests vs. the asymptotically most powerful test. Genet Epidemiol. 1990;7(5):359–370. doi: 10.1002/gepi.1370070506. [DOI] [PubMed] [Google Scholar]
- Sribney W. M., Swift M. Power of sib-pair and sib-trio linkage analysis with assortative mating and multiple disease loci. Am J Hum Genet. 1992 Oct;51(4):773–784. [PMC free article] [PubMed] [Google Scholar]
- Suarez B. K., Rice J., Reich T. The generalized sib pair IBD distribution: its use in the detection of linkage. Ann Hum Genet. 1978 Jul;42(1):87–94. doi: 10.1111/j.1469-1809.1978.tb00933.x. [DOI] [PubMed] [Google Scholar]
- Vieland V. J., Hodge S. E. The problem of ascertainment for linkage analysis. Am J Hum Genet. 1996 May;58(5):1072–1084. [PMC free article] [PubMed] [Google Scholar]
- Ward P. J. Some developments on the affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1993 Jun;52(6):1200–1215. [PMC free article] [PubMed] [Google Scholar]
- Weeks D. E., Lange K. The affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1988 Feb;42(2):315–326. [PMC free article] [PubMed] [Google Scholar]
- Whittemore A. S., Halpern J. A class of tests for linkage using affected pedigree members. Biometrics. 1994 Mar;50(1):118–127. [PubMed] [Google Scholar]