Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1996 Sep;59(3):510–518.

Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy.

P M Thomas 1, N Wohllk 1, E Huang 1, U Kuhnle 1, W Rabl 1, R F Gagel 1, G J Cote 1
PMCID: PMC1914902  PMID: 8751851

Abstract

Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet beta-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted to disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfonylurea receptor are required for normal regulation of beta-cell ATP-dependent potassium channel activity and insulin secretion.

Full text

PDF
510

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Bryan L., Nichols C. G., Wechsler S. W., Clement J. P., 4th, Boyd A. E., 3rd, González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D. A. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995 Apr 21;268(5209):423–426. doi: 10.1126/science.7716547. [DOI] [PubMed] [Google Scholar]
  2. Ammälä C., Moorhouse A., Gribble F., Ashfield R., Proks P., Smith P. A., Sakura H., Coles B., Ashcroft S. J., Ashcroft F. M. Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature. 1996 Feb 8;379(6565):545–548. doi: 10.1038/379545a0. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft F. M. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97–118. doi: 10.1146/annurev.ne.11.030188.000525. [DOI] [PubMed] [Google Scholar]
  4. Aynsley-Green A., Polak J. M., Bloom S. R., Gough M. H., Keeling J., Ashcroft S. J., Turner R. C., Baum J. D. Nesidioblastosis of the pancreas: definition of the syndrome and the management of the severe neonatal hyperinsulinaemic hypoglycaemia. Arch Dis Child. 1981 Jul;56(7):496–508. doi: 10.1136/adc.56.7.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Azzaria M., Schurr E., Gros P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol Cell Biol. 1989 Dec;9(12):5289–5297. doi: 10.1128/mcb.9.12.5289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuppens H., Marynen P., De Boeck C., De Baets F., Eggermont E., Van den Berghe H., Cassiman J. J. A child, homozygous for a stop codon in exon 11, shows milder cystic fibrosis symptoms than her heterozygous nephew. J Med Genet. 1990 Nov;27(11):717–719. doi: 10.1136/jmg.27.11.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunn J. M., Phillips R. A., Zhu X., Becker A., Gallie B. L. Mutations in the RB1 gene and their effects on transcription. Mol Cell Biol. 1989 Nov;9(11):4596–4604. doi: 10.1128/mcb.9.11.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glaser B., Chiu K. C., Anker R., Nestorowicz A., Landau H., Ben-Bassat H., Shlomai Z., Kaiser N., Thornton P. S., Stanley C. A. Familial hyperinsulinism maps to chromosome 11p14-15.1, 30 cM centromeric to the insulin gene. Nat Genet. 1994 Jun;7(2):185–188. doi: 10.1038/ng0694-185. [DOI] [PubMed] [Google Scholar]
  9. Glaser B., Chiu K. C., Liu L., Anker R., Nestorowicz A., Cox N. J., Landau H., Kaiser N., Thornton P. S., Stanley C. A. Recombinant mapping of the familial hyperinsulinism gene to an 0.8 cM region on chromosome 11p15.1 and demonstration of a founder effect in Ashkenazi Jews. Hum Mol Genet. 1995 May;4(5):879–886. doi: 10.1093/hmg/4.5.879. [DOI] [PubMed] [Google Scholar]
  10. Gunderson K. L., Kopito R. R. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis. Cell. 1995 Jul 28;82(2):231–239. doi: 10.1016/0092-8674(95)90310-0. [DOI] [PubMed] [Google Scholar]
  11. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  12. Hwang T. C., Nagel G., Nairn A. C., Gadsby D. C. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4698–4702. doi: 10.1073/pnas.91.11.4698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
  14. Inagaki N., Gonoi T., Clement J. P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. doi: 10.1126/science.270.5239.1166. [DOI] [PubMed] [Google Scholar]
  15. Jaffe R., Hashida Y., Yunis E. J. Pancreatic pathology in hyperinsulinemic hypoglycemia of infancy. Lab Invest. 1980 Mar;42(3):356–365. [PubMed] [Google Scholar]
  16. Khorana S., Gagel R. F., Cote G. J. Direct sequencing of PCR products in agarose gel slices. Nucleic Acids Res. 1994 Aug 25;22(16):3425–3426. doi: 10.1093/nar/22.16.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  18. Lander E. S., Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987 Jun 19;236(4808):1567–1570. doi: 10.1126/science.2884728. [DOI] [PubMed] [Google Scholar]
  19. Ligtenberg M. J., Kemp S., Sarde C. O., van Geel B. M., Kleijer W. J., Barth P. G., Mandel J. L., van Oost B. A., Bolhuis P. A. Spectrum of mutations in the gene encoding the adrenoleukodystrophy protein. Am J Hum Genet. 1995 Jan;56(1):44–50. [PMC free article] [PubMed] [Google Scholar]
  20. Lou H., Cote G. J., Gagel R. F. The calcitonin exon and its flanking intronic sequences are sufficient for the regulation of human calcitonin/calcitonin gene-related peptide alternative RNA splicing. Mol Endocrinol. 1994 Dec;8(12):1618–1626. doi: 10.1210/mend.8.12.7535892. [DOI] [PubMed] [Google Scholar]
  21. Mathew P. M., Young J. M., Abu-Osba Y. K., Mulhern B. D., Hammoudi S., Hamdan J. A., Sa'di A. R. Persistent neonatal hyperinsulinism. Clin Pediatr (Phila) 1988 Mar;27(3):148–151. doi: 10.1177/000992288802700307. [DOI] [PubMed] [Google Scholar]
  22. Philipson L. H. ATP-sensitive K+ channels: paradigm lost, paradigm regained. Science. 1995 Nov 17;270(5239):1159–1159. doi: 10.1126/science.270.5239.1159. [DOI] [PubMed] [Google Scholar]
  23. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  24. Smit L. S., Wilkinson D. J., Mansoura M. K., Collins F. S., Dawson D. C. Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963–9967. doi: 10.1073/pnas.90.21.9963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strautnieks S. S., Thompson R. J., Gardiner R. M., Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet. 1996 Jun;13(2):248–250. doi: 10.1038/ng0696-248. [DOI] [PubMed] [Google Scholar]
  26. Thomas P. M., Cote G. J., Hallman D. M., Mathew P. M. Homozygosity mapping, to chromosome 11p, of the gene for familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet. 1995 Feb;56(2):416–421. [PMC free article] [PubMed] [Google Scholar]
  27. Thomas P. M., Cote G. J., Wohllk N., Haddad B., Mathew P. M., Rabl W., Aguilar-Bryan L., Gagel R. F., Bryan J. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science. 1995 Apr 21;268(5209):426–429. doi: 10.1126/science.7716548. [DOI] [PubMed] [Google Scholar]
  28. Tsui L. C. The spectrum of cystic fibrosis mutations. Trends Genet. 1992 Nov;8(11):392–398. doi: 10.1016/0168-9525(92)90301-j. [DOI] [PubMed] [Google Scholar]
  29. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES