Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1996 Sep;59(3):625–632.

Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42-43.

F J Barrat 1, L Auloge 1, E Pastural 1, R D Lagelouse 1, E Vilmer 1, A J Cant 1, J Weissenbach 1, D Le Paslier 1, A Fischer 1, G de Saint Basile 1
PMCID: PMC1914920  PMID: 8751864

Abstract

The Chediak-Higashi syndrome (CHS) is a severe autosomal recessive condition, features of which are partial oculocutaneous albinism, increased susceptibility to infections, deficient natural killer cell activity, and the presence of large intracytoplasmic granulations in various cell types. Similar genetic disorders have been described in other species, including the beige mouse. On the basis of the hypothesis that the murine chromosome 13 region containing the beige locus was homologous to human chromosome 1, we have mapped the CHS locus to a 5-cM interval in chromosome segment 1q42.1-q42.2. The highest LOD score was obtained with the marker D1S235 (Zmax = 5.38; theta = 0). Haplo-type analysis enabled us to establish D1S2680 and D1S163, respectively, as the telomeric and the centromeric flanking markers. Multipoint linkage analysis confirms the localization of the CHS locus in this interval. Three YAC clones were found to cover the entire region in a conting established by YAC end-sequence characterization and sequence-tagged site mapping. The YAC contig contains all genetic markers that are nonrecombinant for the disease in the nine CHS families studied. This mapping confirms the previous hypothesis that the same gene defect causes CHS in human and beige pheno-type in mice and provides a genetic framework for the identification of candidate genes.

Full text

PDF
625

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baetz K., Isaaz S., Griffiths G. M. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J Immunol. 1995 Jun 1;154(11):6122–6131. [PubMed] [Google Scholar]
  2. Barbosa M. D., Johnson S. A., Achey K., Gutierrez M. J., Wakeland E. K., Zerial M., Kingsmore S. F. The Rab protein family: genetic mapping of six Rab genes in the mouse. Genomics. 1995 Dec 10;30(3):439–444. doi: 10.1006/geno.1995.1262. [DOI] [PubMed] [Google Scholar]
  3. Bejaoui M., Veber F., Girault D., Gaud C., Blanche S., Griscelli C., Fischer A. Phase accélérée de la maladie de Chediak-Higashi. Arch Fr Pediatr. 1989 Dec;46(10):733–736. [PubMed] [Google Scholar]
  4. Blume R. S., Wolff S. M. The Chediak-Higashi syndrome: studies in four patients and a review of the literature. Medicine (Baltimore) 1972 Jul;51(4):247–280. [PubMed] [Google Scholar]
  5. Burkhardt J. K. In search of membrane receptors for microtubule-based motors - is kinectin a kinesin receptor? Trends Cell Biol. 1996 Apr;6(4):127–131. doi: 10.1016/0962-8924(96)20002-9. [DOI] [PubMed] [Google Scholar]
  6. Burkhardt J. K., Wiebel F. A., Hester S., Argon Y. The giant organelles in beige and Chediak-Higashi fibroblasts are derived from late endosomes and mature lysosomes. J Exp Med. 1993 Dec 1;178(6):1845–1856. doi: 10.1084/jem.178.6.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark R. A., Kimball H. R. Defective granulocyte chemotaxis in the Chediak-Higashi syndrome. J Clin Invest. 1971 Dec;50(12):2645–2652. doi: 10.1172/JCI106765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  9. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  10. Fischer A., Landais P., Friedrich W., Gerritsen B., Fasth A., Porta F., Vellodi A., Benkerrou M., Jais J. P., Cavazzana-Calvo M. Bone marrow transplantation (BMT) in Europe for primary immunodeficiencies other than severe combined immunodeficiency: a report from the European Group for BMT and the European Group for Immunodeficiency. Blood. 1994 Feb 15;83(4):1149–1154. [PubMed] [Google Scholar]
  11. Haddad E., Le Deist F., Blanche S., Benkerrou M., Rohrlich P., Vilmer E., Griscelli C., Fischer A. Treatment of Chediak-Higashi syndrome by allogenic bone marrow transplantation: report of 10 cases. Blood. 1995 Jun 1;85(11):3328–3333. [PubMed] [Google Scholar]
  12. Haliotis T., Roder J., Klein M., Ortaldo J., Fauci A. S., Herberman R. B. Chédiak-Higashi gene in humans I. Impairment of natural-killer function. J Exp Med. 1980 May 1;151(5):1039–1048. doi: 10.1084/jem.151.5.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirokawa N. Organelle transport along microtubules - the role of KIFs. Trends Cell Biol. 1996 Apr;6(4):135–141. doi: 10.1016/0962-8924(96)10003-9. [DOI] [PubMed] [Google Scholar]
  14. Holcombe R. F., Jones K. L., Stewart R. M. Lysosomal enzyme activities in Chediak-Higashi syndrome: evaluation of lymphoblastoid cell lines and review of the literature. Immunodeficiency. 1994;5(2):131–140. [PubMed] [Google Scholar]
  15. Jenkins N. A., Justice M. J., Gilbert D. J., Chu M. L., Copeland N. G. Nidogen/entactin (Nid) maps to the proximal end of mouse chromosome 13 linked to beige (bg) and identifies a new region of homology between mouse and human chromosomes. Genomics. 1991 Feb;9(2):401–403. doi: 10.1016/0888-7543(91)90275-j. [DOI] [PubMed] [Google Scholar]
  16. Justice M. J., Silan C. M., Ceci J. D., Buchberg A. M., Copeland N. G., Jenkins N. A. A molecular genetic linkage map of mouse chromosome 13 anchored by the beige (bg) and satin (sa) loci. Genomics. 1990 Feb;6(2):341–351. doi: 10.1016/0888-7543(90)90575-f. [DOI] [PubMed] [Google Scholar]
  17. Kere J., Nagaraja R., Mumm S., Ciccodicola A., D'Urso M., Schlessinger D. Mapping human chromosomes by walking with sequence-tagged sites from end fragments of yeast artificial chromosome inserts. Genomics. 1992 Oct;14(2):241–248. doi: 10.1016/s0888-7543(05)80212-5. [DOI] [PubMed] [Google Scholar]
  18. Kruglyak L., Daly M. J., Lander E. S. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am J Hum Genet. 1995 Feb;56(2):519–527. [PMC free article] [PubMed] [Google Scholar]
  19. Olsen D. R., Nagayoshi T., Fazio M., Mattei M. G., Passage E., Weil D., Timpl R., Chu M. L., Uitto J. Human nidogen: cDNA cloning, cellular expression, and mapping of the gene to chromosome Iq43. Am J Hum Genet. 1989 Jun;44(6):876–885. [PMC free article] [PubMed] [Google Scholar]
  20. Owen F. L., Taylor B. A., Zweidler A., Seidman J. G. The murine gamma-chain of the T cell receptor is closely linked to a spermatocyte specific histone gene and the beige coat color locus on chromosome 13. J Immunol. 1986 Aug 1;137(3):1044–1046. [PubMed] [Google Scholar]
  21. Perou C. M., Kaplan J. Complementation analysis of Chediak-Higashi syndrome: the same gene may be responsible for the defect in all patients and species. Somat Cell Mol Genet. 1993 Sep;19(5):459–468. doi: 10.1007/BF01233251. [DOI] [PubMed] [Google Scholar]
  22. Pfeffer S. R., Dirac-Svejstrup A. B., Soldati T. Rab GDP dissociation inhibitor: putting rab GTPases in the right place. J Biol Chem. 1995 Jul 21;270(29):17057–17059. doi: 10.1074/jbc.270.29.17057. [DOI] [PubMed] [Google Scholar]
  23. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  24. Root R. K., Rosenthal A. S., Balestra D. J. Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi Syndrome leukocytes. J Clin Invest. 1972 Mar;51(3):649–665. doi: 10.1172/JCI106854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  26. SATO A. Chédiak and Higashi's disease: probable identity of a new leucocytal anomaly (Chédiak) and congenital gigantism of peroxidase granules (Higashi). Tohoku J Exp Med. 1955 Feb 25;61(2-3):201–210. doi: 10.1620/tjem.61.201. [DOI] [PubMed] [Google Scholar]
  27. Schekman R., Orci L. Coat proteins and vesicle budding. Science. 1996 Mar 15;271(5255):1526–1533. doi: 10.1126/science.271.5255.1526. [DOI] [PubMed] [Google Scholar]
  28. Targan S. R., Oseas R. The "lazy" NK cells of Chediak-Higashi syndrome. J Immunol. 1983 Jun;130(6):2671–2674. [PubMed] [Google Scholar]
  29. White J. G. The Chediak-Higashi syndrome: a possible lysosomal disease. Blood. 1966 Aug;28(2):143–156. [PubMed] [Google Scholar]
  30. Whiteheart S. W., Kubalek E. W. SNAPs and NSF: general members of the fusion apparatus. Trends Cell Biol. 1995 Feb;5(2):64–68. doi: 10.1016/s0962-8924(00)88948-5. [DOI] [PubMed] [Google Scholar]
  31. Windhorst D. B., Padgett G. The Chediak-Higashi syndrome and the homologous trait in animals. J Invest Dermatol. 1973 Jun;60(6):529–537. doi: 10.1111/1523-1747.ep12703609. [DOI] [PubMed] [Google Scholar]
  32. Zerial M., Stenmark H. Rab GTPases in vesicular transport. Curr Opin Cell Biol. 1993 Aug;5(4):613–620. doi: 10.1016/0955-0674(93)90130-i. [DOI] [PubMed] [Google Scholar]
  33. de Saint Basile G., Arveiler B., Oberlé I., Malcolm S., Levinsky R. J., Lau Y. L., Hofker M., Debre M., Fischer A., Griscelli C. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7576–7579. doi: 10.1073/pnas.84.21.7576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES