Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1996 Jan;58(1):201–212.

Statistical models for trisomic phenotypes.

N E Lamb 1, E Feingold 1, S L Sherman 1
PMCID: PMC1914934  PMID: 8554057

Abstract

Certain genetic disorders are rare in the general population but more common in individuals with specific trisomies, which suggests that the genes involved in the etiology of these disorders may be located on the trisomic chromosome. As with all aneuploid syndromes, however, a considerable degree of variation exists within each phenotype so that any given trait is present only among a subset of the trisomic population. We have previously presented a simple gene-dosage model to explain this phenotypic variation and developed a strategy to map genes for such traits. The mapping strategy does not depend on the simple model but works in theory under any model that predicts that affected individuals have an increased likelihood of disomic homozygosity at the trait locus. This paper explores the robustness of our mapping method by investigating what kinds of models give an expected increase in disomic homozygosity. We describe a number of basic statistical models for trisomic phenotypes. Some of these are logical extensions of standard models for disomic phenotypes, and some are more specific to trisomy. Where possible, we discuss genetic mechanisms applicable to each model. We investigate which models and which parameter values give an expected increase in disomic homozygosity in individuals with the trait. Finally, we determine the sample sizes required to identify the increased disomic homozygosity under each model. Most of the models we explore yield detectable increases in disomic homozygosity for some reasonable range of parameter values, usually corresponding to smaller trait frequencies. It therefore appears that our mapping method should be effective for a wide variety of moderately infrequent traits, even though the exact mode of inheritance is unlikely to be known.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duff K., Williamson R., Richards S. J. Expression of genes encoding two chains of the collagen type VI molecule during human fetal heart development. Int J Cardiol. 1990 Apr;27(1):128–129. doi: 10.1016/0167-5273(90)90202-g. [DOI] [PubMed] [Google Scholar]
  2. Dupuis J., Brown P. O., Siegmund D. Statistical methods for linkage analysis of complex traits from high-resolution maps of identity by descent. Genetics. 1995 Jun;140(2):843–856. doi: 10.1093/genetics/140.2.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  4. Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet. 1980;6(2):137–143. doi: 10.1002/ajmg.1320060207. [DOI] [PubMed] [Google Scholar]
  5. Epstein C. J., Epstein L. B., Cox D. R., Weil J. Functional implications of gene dosage effects in trisomy 21. Hum Genet Suppl. 1981;2:155–172. doi: 10.1007/978-3-642-68006-9_12. [DOI] [PubMed] [Google Scholar]
  6. Feingold E., Lamb N. E., Sherman S. L. Methods for genetic linkage analysis using trisomies. Am J Hum Genet. 1995 Feb;56(2):475–483. [PMC free article] [PubMed] [Google Scholar]
  7. Gene dosage effects in trisomy: comment on a recent article by B. L. Shapiro. Am J Med Genet. 1983 Dec;16(4):635–639. doi: 10.1002/ajmg.1320160421. [DOI] [PubMed] [Google Scholar]
  8. HOPKINSON D. A., SPENCER N., HARRIS H. RED CELL ACID PHOSPHATASE VARIANTS: A NEW HUMAN POLYMORPHISM. Nature. 1963 Sep 7;199:969–971. doi: 10.1038/199969a0. [DOI] [PubMed] [Google Scholar]
  9. James J. W. Frequency in relatives for an all-or-none trait. Ann Hum Genet. 1971 Jul;35(1):47–49. doi: 10.1111/j.1469-1809.1956.tb01377.x. [DOI] [PubMed] [Google Scholar]
  10. Morton N. E., MacLean C. J. Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet. 1974 Jul;26(4):489–503. [PMC free article] [PubMed] [Google Scholar]
  11. Pangalos C., Avramopoulos D., Blouin J. L., Raoul O., deBlois M. C., Prieur M., Schinzel A. A., Gika M., Abazis D., Antonarakis S. E. Understanding the mechanism(s) of mosaic trisomy 21 by using DNA polymorphism analysis. Am J Hum Genet. 1994 Mar;54(3):473–481. [PMC free article] [PubMed] [Google Scholar]
  12. Puffenberger E. G., Kauffman E. R., Bolk S., Matise T. C., Washington S. S., Angrist M., Weissenbach J., Garver K. L., Mascari M., Ladda R. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet. 1994 Aug;3(8):1217–1225. doi: 10.1093/hmg/3.8.1217. [DOI] [PubMed] [Google Scholar]
  13. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet. 1990 Feb;46(2):222–228. [PMC free article] [PubMed] [Google Scholar]
  14. Shen J. J., Williams B. J., Zipursky A., Doyle J., Sherman S. L., Jacobs P. A., Shugar A. L., Soukup S. W., Hassold T. J. Cytogenetic and molecular studies of Down syndrome individuals with leukemia. Am J Hum Genet. 1995 Apr;56(4):915–925. [PMC free article] [PubMed] [Google Scholar]
  15. Suarez B. K., Rice J., Reich T. The generalized sib pair IBD distribution: its use in the detection of linkage. Ann Hum Genet. 1978 Jul;42(1):87–94. doi: 10.1111/j.1469-1809.1978.tb00933.x. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES