Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1996 Jan;58(1):52–64.

Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene.

S L Primo-Parmo 1, C F Bartels 1, B Wiersema 1, A F van der Spek 1, J W Innis 1, B N La Du 1
PMCID: PMC1914969  PMID: 8554068

Abstract

The silent phenotype of human butyrylcholinesterase (BChE), present in most human populations in frequencies of approximately 1/100,000, is characterized by the complete absence of BChE activity or by activity <10% of the average levels of the usual phenotype. Heterogeneity in this phenotype has been well established at the phenotypic level, but only a few silent BCHE alleles have been characterized at the DNA level. Twelve silent alleles of the human butyrylcholinesterase gene (BCHE) have been identified in 17 apparently unrelated patients who were selected by their increased sensitivity to the muscle relaxant succinylcholine. All of these alleles are characterized by single nucleotide substitutions or deletions leading to distinct changes in the structure of the BChE enzyme molecule. Nine of the nucleotide substitutions result in the replacement of single amino acid residues. Three of these variants, BCHE*33C, BCHE*198G, and BCHE*201T, produce normal amounts of immunoreactive but enzymatically inactive BChE protein in the plasma. The other six amino acid substitutions, encoded by BCHE*37S, BCHE*125F, BCHE*170E, BCHE*471R, and BCHE*518L, seem to cause reduced expression of BChE protein, and their role in determining the silent phenotype was confirmed by expression in cell culture. The other four silent alleles, BCHE*271STOP, BCHE*500STOP, BCHE*FS6, and BCHE*I2E3-8G, encode BChES truncated at their C-terminus because of premature stop codons caused by nucleotide substitutions, a frame shift, or altered splicing. The large number of different silent BCHE alleles found within a relatively small number of patients shows that the heterogeneity of the silent BChE phenotype is high. The characterization of silent BChE variants will be useful in the study of the structure/function relationship for this and other closely related enzymes.

Full text

PDF
52

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnason A., Jensson O., Gudmundsson S. Serum esterases of Icelanders. I. A "silent" pseudocholinesterase gene in an Icelandic family. Clin Genet. 1975 May-Jun;7(5):405–412. doi: 10.1111/j.1399-0004.1975.tb00349.x. [DOI] [PubMed] [Google Scholar]
  2. Arpagaus M., Chatonnet A., Masson P., Newton M., Vaughan T. A., Bartels C. F., Nogueira C. P., La Du B. N., Lockridge O. Use of the polymerase chain reaction for homology probing of butyrylcholinesterase from several vertebrates. J Biol Chem. 1991 Apr 15;266(11):6966–6974. [PubMed] [Google Scholar]
  3. Arpagaus M., Fedon Y., Cousin X., Chatonnet A., Bergé J. B., Fournier D., Toutant J. P. cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. J Biol Chem. 1994 Apr 1;269(13):9957–9965. [PubMed] [Google Scholar]
  4. Arpagaus M., Kott M., Vatsis K. P., Bartels C. F., La Du B. N., Lockridge O. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry. 1990 Jan 9;29(1):124–131. doi: 10.1021/bi00453a015. [DOI] [PubMed] [Google Scholar]
  5. Bartels C. F., James K., La Du B. N. DNA mutations associated with the human butyrylcholinesterase J-variant. Am J Hum Genet. 1992 May;50(5):1104–1114. [PMC free article] [PubMed] [Google Scholar]
  6. Bartels C. F., Jensen F. S., Lockridge O., van der Spek A. F., Rubinstein H. M., Lubrano T., La Du B. N. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet. 1992 May;50(5):1086–1103. [PMC free article] [PubMed] [Google Scholar]
  7. Chautard-Freire-Maia E. A., Primo-Parmo S. L., Picheth G., Lourenço M. A., Vieira M. M. The C5 isozyme of serum cholinesterase and adult weight. Hum Hered. 1991;41(5):330–339. doi: 10.1159/000154021. [DOI] [PubMed] [Google Scholar]
  8. Das P. K. Further evidence on the heterogeneity of "silent" serum cholinesterase variants. Hum Hered. 1973;23(1):88–96. doi: 10.1159/000152559. [DOI] [PubMed] [Google Scholar]
  9. Doctor B. P., Chapman T. C., Christner C. E., Deal C. D., De La Hoz D. M., Gentry M. K., Ogert R. A., Rush R. S., Smyth K. K., Wolfe A. D. Complete amino acid sequence of fetal bovine serum acetylcholinesterase and its comparison in various regions with other cholinesterases. FEBS Lett. 1990 Jun 18;266(1-2):123–127. doi: 10.1016/0014-5793(90)81522-p. [DOI] [PubMed] [Google Scholar]
  10. Duval N., Bon S., Silman I., Sussman J., Massoulié J. Site-directed mutagenesis of active-site-related residues in Torpedo acetylcholinesterase. Presence of a glutamic acid in the catalytic triad. FEBS Lett. 1992 Sep 14;309(3):421–423. doi: 10.1016/0014-5793(92)80821-w. [DOI] [PubMed] [Google Scholar]
  11. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  12. Ehrlich G., Ginzberg D., Loewenstein Y., Glick D., Kerem B., Ben-Ari S., Zakut H., Soreq H. Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics. 1994 Jul 15;22(2):288–295. doi: 10.1006/geno.1994.1386. [DOI] [PubMed] [Google Scholar]
  13. Garry P. J., Dietz A. A., Lubrano T., Ford P. C., James K., Rubinstein H. M. New allele at cholinesterase locus 1. J Med Genet. 1976 Feb;13(1):38–42. doi: 10.1136/jmg.13.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibney G., Camp S., Dionne M., MacPhee-Quigley K., Taylor P. Mutagenesis of essential functional residues in acetylcholinesterase. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7546–7550. doi: 10.1073/pnas.87.19.7546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gnatt A., Loewenstein Y., Yaron A., Schwarz M., Soreq H. Site-directed mutagenesis of active site residues reveals plasticity of human butyrylcholinesterase in substrate and inhibitor interactions. J Neurochem. 1994 Feb;62(2):749–755. doi: 10.1046/j.1471-4159.1994.62020749.x. [DOI] [PubMed] [Google Scholar]
  16. Goedde H. W., Altland K. Evidence for different "silent genes" in the human serum pseudocholinesterase polymorphism. Ann N Y Acad Sci. 1968 Jun 14;151(1):540–544. doi: 10.1111/j.1749-6632.1968.tb11913.x. [DOI] [PubMed] [Google Scholar]
  17. Goedde H. W., Gehring D., Hofmann R. A. On the problem of a "silent gene" in pseudocholinesterase polymorphism. Biochim Biophys Acta. 1965 Sep 13;107(2):391–393. doi: 10.1016/0304-4165(65)90149-2. [DOI] [PubMed] [Google Scholar]
  18. Gutsche B. B., Scott E. M., Wright R. C. Hereditary deficiency of pseudocholinesterase in Eskimos. Nature. 1967 Jul 15;215(5098):322–323. doi: 10.1038/215322b0. [DOI] [PubMed] [Google Scholar]
  19. HARRIS H., WHITTAKER M. Differential inhibition of human serum cholinesterase with fluoride: recognition of two new phenotypes. Nature. 1961 Jul 29;191:496–498. doi: 10.1038/191496a0. [DOI] [PubMed] [Google Scholar]
  20. HARRIS H., WHITTAKER M., LEHMANN H., SILK E. The pseudocholinesterase variants. Esterase levels and dibucaine numbers in families selected through suxamethonium sensitive individuals. Acta Genet Stat Med. 1960;10:1–16. doi: 10.1159/000151112. [DOI] [PubMed] [Google Scholar]
  21. HART S. M., MITCHELL J. V. Suxamethonium in the absence of pseudocholinesterase. Br J Anaesth. 1962 Mar;34:207–209. doi: 10.1093/bja/34.3.207. [DOI] [PubMed] [Google Scholar]
  22. Hada T., Muratani K., Ohue T., Imanishi H., Moriwaki Y., Itoh M., Amuro Y., Higashino K. A variant serum cholinesterase and a confirmed point mutation at Gly-365 to Arg found in a patient with liver cirrhosis. Intern Med. 1992 Mar;31(3):357–362. doi: 10.2169/internalmedicine.31.357. [DOI] [PubMed] [Google Scholar]
  23. Hall L. M., Spierer P. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5' leader. EMBO J. 1986 Nov;5(11):2949–2954. doi: 10.1002/j.1460-2075.1986.tb04591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Harel M., Sussman J. L., Krejci E., Bon S., Chanal P., Massoulié J., Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10827–10831. doi: 10.1073/pnas.89.22.10827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hidaka K., Iuchi I., Yamasaki T., Ohhara M., Shoda T., Primo-Parmo S., Ladu B. N. [Identification of two different genetic mutation associated with silent phenotypes for human serum cholinesterase in Japanese]. Rinsho Byori. 1992 May;40(5):535–540. [PubMed] [Google Scholar]
  26. Jbilo O., Bartels C. F., Chatonnet A., Toutant J. P., Lockridge O. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon. 1994 Nov;32(11):1445–1457. doi: 10.1016/0041-0101(94)90416-2. [DOI] [PubMed] [Google Scholar]
  27. Jbilo O., Chatonnet A. Complete sequence of rabbit butyrylcholinesterase. Nucleic Acids Res. 1990 Jul 11;18(13):3990–3990. doi: 10.1093/nar/18.13.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jbilo O., Toutant J. P., Vatsis K. P., Chatonnet A., Lockridge O. Promoter and transcription start site of human and rabbit butyrylcholinesterase genes. J Biol Chem. 1994 Aug 19;269(33):20829–20837. [PubMed] [Google Scholar]
  29. Jensen F. S., Bartels C. F., La Du B. N. Structural basis of the butyrylcholinesterase H-variant segregating in two Danish families. Pharmacogenetics. 1992 Oct;2(5):234–240. doi: 10.1097/00008571-199210000-00006. [DOI] [PubMed] [Google Scholar]
  30. KALOW W., GENEST K. A method for the detection of atypical forms of human serum cholinesterase; determination of dibucaine numbers. Can J Biochem Physiol. 1957 Jun;35(6):339–346. doi: 10.1139/y57-041. [DOI] [PubMed] [Google Scholar]
  31. KALOW W., LINDSAY H. A. A comparison of optical and manometric methods for the assay of human serum cholinesterase. Can J Biochem Physiol. 1955 Jul;33(4):568–574. [PubMed] [Google Scholar]
  32. KALOW W., STARON N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem Physiol. 1957 Dec;35(12):1305–1320. [PubMed] [Google Scholar]
  33. Krejci E., Duval N., Chatonnet A., Vincens P., Massoulié J. Cholinesterase-like domains in enzymes and structural proteins: functional and evolutionary relationships and identification of a catalytically essential aspartic acid. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6647–6651. doi: 10.1073/pnas.88.15.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. LIDDELL J., LEHMANN H., SILK E. A 'silent' pseudo-cholinesterase gene. Nature. 1962 Feb 10;193:561–562. doi: 10.1038/193561a0. [DOI] [PubMed] [Google Scholar]
  35. Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
  36. Layer P. G., Weikert T., Alber R. Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res. 1993 Aug;273(2):219–226. doi: 10.1007/BF00312823. [DOI] [PubMed] [Google Scholar]
  37. Lockridge O., Bartels C. F., Vaughan T. A., Wong C. K., Norton S. E., Johnson L. L. Complete amino acid sequence of human serum cholinesterase. J Biol Chem. 1987 Jan 15;262(2):549–557. [PubMed] [Google Scholar]
  38. Lubin A. H., Garry P. J., Owen G. M., Prince L. C., Dietz A. A. Further variation of the "silent" cholinesterase gene. Biochem Med. 1973 Aug;8(1):160–165. doi: 10.1016/0006-2944(73)90019-7. [DOI] [PubMed] [Google Scholar]
  39. Maekawa M., Sudo K., Kanno T., Kotani K., Dey D. C., Ishikawa J., Izumi M., Etoh K. Genetic basis of the silent phenotype of serum butyrylcholinesterase in three compound heterozygotes. Clin Chim Acta. 1995 Feb 28;235(1):41–57. doi: 10.1016/0009-8981(95)06014-1. [DOI] [PubMed] [Google Scholar]
  40. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  41. McGuire M. C., Nogueira C. P., Bartels C. F., Lightstone H., Hajra A., Van der Spek A. F., Lockridge O., La Du B. N. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc Natl Acad Sci U S A. 1989 Feb;86(3):953–957. doi: 10.1073/pnas.86.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McTiernan C., Adkins S., Chatonnet A., Vaughan T. A., Bartels C. F., Kott M., Rosenberry T. L., La Du B. N., Lockridge O. Brain cDNA clone for human cholinesterase. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6682–6686. doi: 10.1073/pnas.84.19.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Millard C. B., Broomfield C. A. A computer model of glycosylated human butyrylcholinesterase. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1280–1286. doi: 10.1016/0006-291x(92)90212-4. [DOI] [PubMed] [Google Scholar]
  44. Muratani K., Hada T., Yamamoto Y., Kaneko T., Shigeto Y., Ohue T., Furuyama J., Higashino K. Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11315–11319. doi: 10.1073/pnas.88.24.11315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Mutero A., Bride J. M., Pralavorio M., Fournier D. Drosophila melanogaster acetylcholinesterase: identification and expression of two mutations responsible for cold- and heat-sensitive phenotypes. Mol Gen Genet. 1994 Jun 15;243(6):699–705. doi: 10.1007/BF00279580. [DOI] [PubMed] [Google Scholar]
  46. Müllenbach R., Lagoda P. J., Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 1989 Dec;5(12):391–391. [PubMed] [Google Scholar]
  47. Neville L. F., Gnatt A., Loewenstein Y., Seidman S., Ehrlich G., Soreq H. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. EMBO J. 1992 Apr;11(4):1641–1649. doi: 10.1002/j.1460-2075.1992.tb05210.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nogueira C. P., Bartels C. F., McGuire M. C., Adkins S., Lubrano T., Rubinstein H. M., Lightstone H., Van der Spek A. F., Lockridge O., La Du B. N. Identification of two different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase. Am J Hum Genet. 1992 Oct;51(4):821–828. [PMC free article] [PubMed] [Google Scholar]
  49. Nogueira C. P., McGuire M. C., Graeser C., Bartels C. F., Arpagaus M., Van der Spek A. F., Lightstone H., Lockridge O., La Du B. N. Identification of a frameshift mutation responsible for the silent phenotype of human serum cholinesterase, Gly 117 (GGT----GGAG). Am J Hum Genet. 1990 May;46(5):934–942. [PMC free article] [PubMed] [Google Scholar]
  50. Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993 Aug 15;268(23):17083–17095. [PubMed] [Google Scholar]
  51. Pantuck E. J. Plasma cholinesterase: gene and variations. Anesth Analg. 1993 Aug;77(2):380–386. doi: 10.1213/00000539-199377020-00027. [DOI] [PubMed] [Google Scholar]
  52. Prody C. A., Zevin-Sonkin D., Gnatt A., Goldberg O., Soreq H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3555–3559. doi: 10.1073/pnas.84.11.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rachinsky T. L., Camp S., Li Y., Ekström T. J., Newton M., Taylor P. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species. Neuron. 1990 Sep;5(3):317–327. doi: 10.1016/0896-6273(90)90168-f. [DOI] [PubMed] [Google Scholar]
  54. Radić Z., Gibney G., Kawamoto S., MacPhee-Quigley K., Bongiorno C., Taylor P. Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry. 1992 Oct 13;31(40):9760–9767. doi: 10.1021/bi00155a032. [DOI] [PubMed] [Google Scholar]
  55. Randall W. R., Rimer M., Gough N. R. Cloning and analysis of chicken acetylcholinesterase transcripts from muscle and brain. Biochim Biophys Acta. 1994 Aug 2;1218(3):453–456. doi: 10.1016/0167-4781(94)90204-6. [DOI] [PubMed] [Google Scholar]
  56. Rao P. R., Gopalam K. B. High incidence of the silent allele at cholinesterase locus I in Vysyas of Andhra Pradesh (S. India). Hum Genet. 1979 Nov 1;52(1):139–141. doi: 10.1007/BF00284608. [DOI] [PubMed] [Google Scholar]
  57. Robberson B. L., Cote G. J., Berget S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. doi: 10.1128/mcb.10.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rubinstein H. M., Dietz A. A., Hodges L. K., Lubrano T., Czebotar V. Silent cholinesterase gene: variations in the properties of serum enzyme in apparent homozygotes. J Clin Invest. 1970 Mar;49(3):479–486. doi: 10.1172/JCI106257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Rubinstein H. M., Dietz A. A., Lubrano T., Garry P. J. E1j, a quantitative variant at cholinesterase locus 1: immunological evidence. J Med Genet. 1976 Feb;13(1):43–45. doi: 10.1136/jmg.13.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  61. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Schumacher M., Camp S., Maulet Y., Newton M., MacPhee-Quigley K., Taylor S. S., Friedmann T., Taylor P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. 1986 Jan 30-Feb 5Nature. 319(6052):407–409. doi: 10.1038/319407a0. [DOI] [PubMed] [Google Scholar]
  63. Scott E. M. Properties of the trace enzyme in human serum cholinesterase deficiency. Biochem Biophys Res Commun. 1970 Mar 12;38(5):902–906. doi: 10.1016/0006-291x(70)90806-5. [DOI] [PubMed] [Google Scholar]
  64. Scott E. M., Weaver D. D., Wright R. C. Discrimination of phenotypes in human serum cholinesterase deficiency. Am J Hum Genet. 1970 Jul;22(4):363–369. [PMC free article] [PubMed] [Google Scholar]
  65. Scott E. M., Wright R. C. A third type of serum cholinesterase deficiency in Eskimos. Am J Hum Genet. 1976 May;28(3):253–256. [PMC free article] [PubMed] [Google Scholar]
  66. Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992 Sep 5;267(25):17640–17648. [PubMed] [Google Scholar]
  67. Soreq H., Ben-Aziz R., Prody C. A., Seidman S., Gnatt A., Neville L., Lieman-Hurwitz J., Lev-Lehman E., Ginzberg D., Lipidot-Lifson Y. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9688–9692. doi: 10.1073/pnas.87.24.9688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Stephens R. M., Schneider T. D. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J Mol Biol. 1992 Dec 20;228(4):1124–1136. doi: 10.1016/0022-2836(92)90320-j. [DOI] [PubMed] [Google Scholar]
  69. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  70. Szeinberg A., Pipano S., Assa M., Medalie J. H., Neufeld H. N. High frequency of atypical pseudocholinesterase gene among Iraqi and Iranian Jews. Clin Genet. 1972;3(2):123–127. doi: 10.1111/j.1399-0004.1972.tb01733.x. [DOI] [PubMed] [Google Scholar]
  71. Whittaker M., Britten J. J. E1h, a new allele at cholinesterase locus 1. Hum Hered. 1987;37(1):54–58. doi: 10.1159/000153677. [DOI] [PubMed] [Google Scholar]
  72. Whittaker M., Jones J., Braven J. Heterogeneity of the silent gene for plasma cholinesterase. Immunological studies. Hum Hered. 1990;40(3):153–158. doi: 10.1159/000153923. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES