Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):3554–3562. doi: 10.1128/jvi.71.5.3554-3562.1997

Mutational analysis of the human papillomavirus type 16 E1--E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments.

S Roberts 1, I Ashmole 1, S M Rookes 1, P H Gallimore 1
PMCID: PMC191502  PMID: 9094627

Abstract

The function of the human papillomavirus (HPV) E4 proteins is unknown. In cultured epithelial cells the proteins associate with the keratin intermediate filaments (IFs) and, for some E4 types, e.g., HPV type 16 (HPV-16), induce collapse of the keratin networks. An N-terminal leucine-rich motif (LLXLL) is a conserved feature of many E4 proteins. In a previous study we showed that deletion of this region from the HPV-1 and -16 E4 proteins abrogated the localization of the mutant proteins to the keratin cytoskeleton in a simian virus 40-transformed human keratinocyte cell line (S. Roberts, I. Ashmole, L. J. Gibson, S. M. Rookes, G. J. Barton, and P. H. Gallimore, J. Virol. 68:6432-6445, 1994). The E4 proteins of HPV-1 and -16 have little sequence homology except at the N terminus. Therefore, to establish the role of sequences other than those at the N terminus, we have performed a mutational analysis of the HPV-16 E4 protein. The results of the analysis were as follows: (i) similar to findings for the HPV-1 protein, no mutation of HPV-16 E4 sequences (other than the N-terminal leucine motif) results in a mutant protein which fails to colocalize to the keratin IFs; (ii) the C-terminal domain (residues 61 to 92) is not essential for association with the cytoskeleton; and (iii) deletion of C-terminal sequences (residues 84 to 92; LTVIVTLHP) corresponding to part of a domain conserved between mucosal E4 proteins affects the ability of the mutant protein to induce cytoskeletal collapse, despite colocalization with the keratin IFs. Further analysis of this region showed that conserved hydrophobic residues valines 86 and 88 are important. In addition, we show that the HPV-16 E4 protein is detergent insoluble and exists as several disulfide-linked, high-molecular-weight complexes which could represent homo-oligomers. The C-terminal sequences (residues 84 to 92), in particular valines 86 and 88, are important in the formation of these insoluble complexes. The results of this study support our postulate that the E4 proteins include functional domains at the N terminus and the C terminus, with the intervening sequences possibly acting as a flexible hinge.

Full Text

The Full Text of this article is available as a PDF (381.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen P. H., Ornelles D. A., Shenk T. The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol. 1993 Jun;67(6):3507–3514. doi: 10.1128/jvi.67.6.3507-3514.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chiang C. M., Ustav M., Stenlund A., Ho T. F., Broker T. R., Chow L. T. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5799–5803. doi: 10.1073/pnas.89.13.5799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chow L. T., Nasseri M., Wolinsky S. M., Broker T. R. Human papillomavirus types 6 and 11 mRNAs from genital condylomata acuminata. J Virol. 1987 Aug;61(8):2581–2588. doi: 10.1128/jvi.61.8.2581-2588.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chow L. T., Reilly S. S., Broker T. R., Taichman L. B. Identification and mapping of human papillomavirus type 1 RNA transcripts recovered from plantar warts and infected epithelial cell cultures. J Virol. 1987 Jun;61(6):1913–1918. doi: 10.1128/jvi.61.6.1913-1918.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crum C. P., Barber S., Symbula M., Snyder K., Saleh A. M., Roche J. K. Coexpression of the human papillomavirus type 16 E4 and L1 open reading frames in early cervical neoplasia. Virology. 1990 Sep;178(1):238–246. doi: 10.1016/0042-6822(90)90399-c. [DOI] [PubMed] [Google Scholar]
  6. Doorbar J., Campbell D., Grand R. J., Gallimore P. H. Identification of the human papilloma virus-1a E4 gene products. EMBO J. 1986 Feb;5(2):355–362. doi: 10.1002/j.1460-2075.1986.tb04219.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doorbar J., Coneron I., Gallimore P. H. Sequence divergence yet conserved physical characteristics among the E4 proteins of cutaneous human papillomaviruses. Virology. 1989 Sep;172(1):51–62. doi: 10.1016/0042-6822(89)90106-2. [DOI] [PubMed] [Google Scholar]
  8. Doorbar J., Ely S., Coleman N., Hibma M., Davies D. H., Crawford L. Epitope-mapped monoclonal antibodies against the HPV16E1--E4 protein. Virology. 1992 Mar;187(1):353–359. doi: 10.1016/0042-6822(92)90327-l. [DOI] [PubMed] [Google Scholar]
  9. Doorbar J., Ely S., Sterling J., McLean C., Crawford L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature. 1991 Aug 29;352(6338):824–827. doi: 10.1038/352824a0. [DOI] [PubMed] [Google Scholar]
  10. Doorbar J., Evans H. S., Coneron I., Crawford L. V., Gallimore P. H. Analysis of HPV-1 E4 gene expression using epitope-defined antibodies. EMBO J. 1988 Mar;7(3):825–833. doi: 10.1002/j.1460-2075.1988.tb02881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doorbar J., Medcalf E., Napthine S. Analysis of HPV1 E4 complexes and their association with keratins in vivo. Virology. 1996 Apr 1;218(1):114–126. doi: 10.1006/viro.1996.0171. [DOI] [PubMed] [Google Scholar]
  12. Fuchs E. Intermediate filaments and disease: mutations that cripple cell strength. J Cell Biol. 1994 May;125(3):511–516. doi: 10.1083/jcb.125.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giri I., Yaniv M. Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. EMBO J. 1988 Sep;7(9):2823–2829. doi: 10.1002/j.1460-2075.1988.tb03138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grand R. J., Doorbar J., Smith K. J., Coneron I., Gallimore P. H. Phosphorylation of the human papillomavirus type 1 E4 proteins in vivo and in vitro. Virology. 1989 May;170(1):201–213. doi: 10.1016/0042-6822(89)90367-x. [DOI] [PubMed] [Google Scholar]
  15. Halbert C. L., Demers G. W., Galloway D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol. 1991 Jan;65(1):473–478. doi: 10.1128/jvi.65.1.473-478.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hawley-Nelson P., Vousden K. H., Hubbert N. L., Lowy D. R., Schiller J. T. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989 Dec 1;8(12):3905–3910. doi: 10.1002/j.1460-2075.1989.tb08570.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudson J. B., Bedell M. A., McCance D. J., Laiminis L. A. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol. 1990 Feb;64(2):519–526. doi: 10.1128/jvi.64.2.519-526.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jareborg N., Burnett S. Immunofluorescent detection of bovine papillomavirus E4 antigen in the cytoplasm of cells permissive in vitro for viral DNA amplification. J Gen Virol. 1991 Sep;72(Pt 9):2269–2274. doi: 10.1099/0022-1317-72-9-2269. [DOI] [PubMed] [Google Scholar]
  19. Karczewski M. K., Strebel K. Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. J Virol. 1996 Jan;70(1):494–507. doi: 10.1128/jvi.70.1.494-507.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lambert P. F. Papillomavirus DNA replication. J Virol. 1991 Jul;65(7):3417–3420. doi: 10.1128/jvi.65.7.3417-3420.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leechanachai P., Banks L., Moreau F., Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene. 1992 Jan;7(1):19–25. [PubMed] [Google Scholar]
  22. Leptak C., Ramon y Cajal S., Kulke R., Horwitz B. H., Riese D. J., 2nd, Dotto G. P., DiMaio D. Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol. 1991 Dec;65(12):7078–7083. doi: 10.1128/jvi.65.12.7078-7083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liebowitz D., Kopan R., Fuchs E., Sample J., Kieff E. An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Mol Cell Biol. 1987 Jul;7(7):2299–2308. doi: 10.1128/mcb.7.7.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matlashewski G., Schneider J., Banks L., Jones N., Murray A., Crawford L. Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J. 1987 Jun;6(6):1741–1746. doi: 10.1002/j.1460-2075.1987.tb02426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McBride A. A., Romanczuk H., Howley P. M. The papillomavirus E2 regulatory proteins. J Biol Chem. 1991 Oct 5;266(28):18411–18414. [PubMed] [Google Scholar]
  26. Mitchison H. M., Grand R. J., Byrd P. J., Johnson G. D., Parton A., Gallimore P. H. The expression of the adenovirus 12 early region 1B 19K protein using a recombinant simian virus 40 system. J Gen Virol. 1990 Aug;71(Pt 8):1713–1722. doi: 10.1099/0022-1317-71-8-1713. [DOI] [PubMed] [Google Scholar]
  27. Münger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989 Oct;63(10):4417–4421. doi: 10.1128/jvi.63.10.4417-4421.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nasseri M., Hirochika R., Broker T. R., Chow L. T. A human papilloma virus type 11 transcript encoding an E1--E4 protein. Virology. 1987 Aug;159(2):433–439. doi: 10.1016/0042-6822(87)90482-x. [DOI] [PubMed] [Google Scholar]
  29. Neary K., Horwitz B. H., DiMaio D. Mutational analysis of open reading frame E4 of bovine papillomavirus type 1. J Virol. 1987 Apr;61(4):1248–1252. doi: 10.1128/jvi.61.4.1248-1252.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Palefsky J. M., Winkler B., Rabanus J. P., Clark C., Chan S., Nizet V., Schoolnik G. K. Characterization of in vivo expression of the human papillomavirus type 16 E4 protein in cervical biopsy tissues. J Clin Invest. 1991 Jun;87(6):2132–2141. doi: 10.1172/JCI115245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pim D., Collins M., Banks L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene. 1992 Jan;7(1):27–32. [PubMed] [Google Scholar]
  32. Pray T. R., Laimins L. A. Differentiation-dependent expression of E1--E4 proteins in cell lines maintaining episomes of human papillomavirus type 31b. Virology. 1995 Jan 10;206(1):679–685. doi: 10.1016/s0042-6822(95)80088-3. [DOI] [PubMed] [Google Scholar]
  33. Roberts S., Ashmole I., Gibson L. J., Rookes S. M., Barton G. J., Gallimore P. H. Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol. 1994 Oct;68(10):6432–6445. doi: 10.1128/jvi.68.10.6432-6445.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roberts S., Ashmole I., Johnson G. D., Kreider J. W., Gallimore P. H. Cutaneous and mucosal human papillomavirus E4 proteins form intermediate filament-like structures in epithelial cells. Virology. 1993 Nov;197(1):176–187. doi: 10.1006/viro.1993.1578. [DOI] [PubMed] [Google Scholar]
  35. Roberts S., Ashmole I., Sheehan T. M., Davies A. H., Gallimore P. H. Human papillomavirus type 1 E4 protein is a zinc-binding protein. Virology. 1994 Aug 1;202(2):865–874. doi: 10.1006/viro.1994.1408. [DOI] [PubMed] [Google Scholar]
  36. Rogel-Gaillard C., Breitburd F., Orth G. Human papillomavirus type 1 E4 proteins differing by their N-terminal ends have distinct cellular localizations when transiently expressed in vitro. J Virol. 1992 Feb;66(2):816–823. doi: 10.1128/jvi.66.2.816-823.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rogel-Gaillard C., Pehau-Arnaudet G., Breitburd F., Orth G. Cytopathic effect in human papillomavirus type 1-induced inclusion warts: in vitro analysis of the contribution of two forms of the viral E4 protein. J Invest Dermatol. 1993 Dec;101(6):843–851. doi: 10.1111/1523-1747.ep12371705. [DOI] [PubMed] [Google Scholar]
  38. Shoeman R. L., Höner B., Stoller T. J., Kesselmeier C., Miedel M. C., Traub P., Graves M. C. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6336–6340. doi: 10.1073/pnas.87.16.6336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sterling J. C., Skepper J. N., Stanley M. A. Immunoelectron microscopical localization of human papillomavirus type 16 L1 and E4 proteins in cervical keratinocytes cultured in vivo. J Invest Dermatol. 1993 Feb;100(2):154–158. doi: 10.1111/1523-1747.ep12462790. [DOI] [PubMed] [Google Scholar]
  40. Straight S. W., Hinkle P. M., Jewers R. J., McCance D. J. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993 Aug;67(8):4521–4532. doi: 10.1128/jvi.67.8.4521-4532.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. White E., Cipriani R. Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol. 1990 Jan;10(1):120–130. doi: 10.1128/mcb.10.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang Y., Schneider R. J. Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J Virol. 1994 Apr;68(4):2544–2555. doi: 10.1128/jvi.68.4.2544-2555.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. de Villiers E. M. Human pathogenic papillomavirus types: an update. Curr Top Microbiol Immunol. 1994;186:1–12. doi: 10.1007/978-3-642-78487-3_1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES