Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1996 Jun;58(6):1205–1211.

Mutations and phenotype in isolated glycerol kinase deficiency.

A P Walker 1, F Muscatelli 1, A N Stafford 1, J Chelly 1, N Dahl 1, H K Blomquist 1, J Delanghe 1, P J Willems 1, B Steinmann 1, A P Monaco 1
PMCID: PMC1915081  PMID: 8651297

Abstract

We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development.

Full text

PDF
1205

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chelly J., Concordet J. P., Kaplan J. C., Kahn A. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2617–2621. doi: 10.1073/pnas.86.8.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chelly J., Kaplan J. C., Maire P., Gautron S., Kahn A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature. 1988 Jun 30;333(6176):858–860. doi: 10.1038/333858a0. [DOI] [PubMed] [Google Scholar]
  3. Davies K. E., Patterson M. N., Kenwrick S. J., Bell M. V., Sloan H. R., Westman J. A., Elsas L. J., 2nd, Mahan J. Fine mapping of glycerol kinase deficiency and congenital adrenal hypoplasia within Xp21 on the short arm of the human X chromosome. Am J Med Genet. 1988 Mar;29(3):557–564. doi: 10.1002/ajmg.1320290313. [DOI] [PubMed] [Google Scholar]
  4. Eriksson A., Lindstedt S., Ransnäs L., von Wendt L. Deficiency of glycerol kinase (EC 2.7.1.30). Clin Chem. 1983 Apr;29(4):718–722. [PubMed] [Google Scholar]
  5. Francke U., Harper J. F., Darras B. T., Cowan J. M., McCabe E. R., Kohlschütter A., Seltzer W. K., Saito F., Goto J., Harpey J. P. Congenital adrenal hypoplasia, myopathy, and glycerol kinase deficiency: molecular genetic evidence for deletions. Am J Hum Genet. 1987 Mar;40(3):212–227. [PMC free article] [PubMed] [Google Scholar]
  6. Fries M. H., Lebo R. V., Schonberg S. A., Golabi M., Seltzer W. K., Gitelman S. E., Golbus M. S. Mental retardation locus in Xp21 chromosome microdeletion. Am J Med Genet. 1993 Jun 1;46(4):363–368. doi: 10.1002/ajmg.1320460404. [DOI] [PubMed] [Google Scholar]
  7. Ginns E. I., Barranger J. A., McClean S. W., Sliva C., Young R., Schaefer E., Goodman S. I., McCabe E. R. A juvenile form of glycerol kinase deficiency with episodic vomiting, acidemia, and stupor. J Pediatr. 1984 May;104(5):736–739. doi: 10.1016/s0022-3476(84)80956-7. [DOI] [PubMed] [Google Scholar]
  8. Goussault Y., Turpin E., Neel D., Dreux C., Chanu B., Bakir R., Rouffy J. 'Pseudohypertriglyceridemia' caused by hyperglycerolemia due to congenital enzyme deficiency. Clin Chim Acta. 1982 Aug 18;123(3):269–274. doi: 10.1016/0009-8981(82)90171-1. [DOI] [PubMed] [Google Scholar]
  9. Guggenheim M. A., McCabe E. R., Roig M., Goodman S. I., Lum G. M., Bullen W. W., Ringel S. P. Glycerol kinase deficiency with neuromuscular, skeletal, and adrenal abnormalities. Ann Neurol. 1980 May;7(5):441–449. doi: 10.1002/ana.410070509. [DOI] [PubMed] [Google Scholar]
  10. Guo W., Worley K., Adams V., Mason J., Sylvester-Jackson D., Zhang Y. H., Towbin J. A., Fogt D. D., Madu S., Wheeler D. A. Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene. Nat Genet. 1993 Aug;4(4):367–372. doi: 10.1038/ng0893-367. [DOI] [PubMed] [Google Scholar]
  11. Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ikuta S., Takagi K., Wallace R. B., Itakura K. Dissociation kinetics of 19 base paired oligonucleotide-DNA duplexes containing different single mismatched base pairs. Nucleic Acids Res. 1987 Jan 26;15(2):797–811. doi: 10.1093/nar/15.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  14. Lemna W. K., Feldman G. L., Kerem B., Fernbach S. D., Zevkovich E. P., O'Brien W. E., Riordan J. R., Collins F. S., Tsui L. C., Beaudet A. L. Mutation analysis for heterozygote detection and the prenatal diagnosis of cystic fibrosis. N Engl J Med. 1990 Feb 1;322(5):291–296. doi: 10.1056/NEJM199002013220503. [DOI] [PubMed] [Google Scholar]
  15. Lewis B., Harbord M., Keenan R., Carey W., Harrison R., Robertson E. Isolated glycerol kinase deficiency in a neonate. J Child Neurol. 1994 Jan;9(1):70–73. doi: 10.1177/088307389400900118. [DOI] [PubMed] [Google Scholar]
  16. McCabe E. R., Fennessey P. V., Guggenheim M. A., Miles B. S., Bullen W. W., Sceats D. J., Goodman S. I. Human glycerol kinase deficiency with hyperglycerolemia and glyceroluria. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1327–1333. doi: 10.1016/0006-291x(77)91437-1. [DOI] [PubMed] [Google Scholar]
  17. McIntosh I., Hamosh A., Dietz H. C. Nonsense mutations and diminished mRNA levels. Nat Genet. 1993 Jul;4(3):219–219. doi: 10.1038/ng0793-219. [DOI] [PubMed] [Google Scholar]
  18. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muscatelli F., Strom T. M., Walker A. P., Zanaria E., Récan D., Meindl A., Bardoni B., Guioli S., Zehetner G., Rabl W. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994 Dec 15;372(6507):672–676. doi: 10.1038/372672a0. [DOI] [PubMed] [Google Scholar]
  20. Pometta D., Suenram A., von der Weid N., Widmann J. J. Liver glycerokinase deficiency in man with hyperglycerolaemia and hypertriglyceridaemia. Eur J Clin Invest. 1984 Apr;14(2):103–106. doi: 10.1111/j.1365-2362.1984.tb02096.x. [DOI] [PubMed] [Google Scholar]
  21. Rose C. I., Haines D. S. Familial hyperglycerolemia. J Clin Invest. 1978 Jan;61(1):163–170. doi: 10.1172/JCI108914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Récan D., Chafey P., Leturcq F., Hugnot J. P., Vincent N., Tomé F., Collin H., Simon D., Czernichow P., Nicholson L. V. Are cysteine-rich and COOH-terminal domains of dystrophin critical for sarcolemmal localization? J Clin Invest. 1992 Feb;89(2):712–716. doi: 10.1172/JCI115640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sargent C. A., Affara N. A., Bentley E., Pelmear A., Bailey D. M., Davey P., Dow D., Leversha M., Aplin H., Besley G. T. Cloning of the X-linked glycerol kinase deficiency gene and its identification by sequence comparison to the Bacillus subtilis homologue. Hum Mol Genet. 1993 Feb;2(2):97–106. doi: 10.1093/hmg/2.2.97. [DOI] [PubMed] [Google Scholar]
  24. Sargent C. A., Young C., Marsh S., Ferguson-Smith M. A., Affara N. A. The glycerol kinase gene family: structure of the Xp gene, and related intronless retroposons. Hum Mol Genet. 1994 Aug;3(8):1317–1324. doi: 10.1093/hmg/3.8.1317. [DOI] [PubMed] [Google Scholar]
  25. Walker A. P., Chelly J., Love D. R., Brush Y. I., Récan D., Chaussain J. L., Oley C. A., Connor J. M., Yates J., Price D. A. A YAC contig in Xp21 containing the adrenal hypoplasia congenita and glycerol kinase deficiency genes. Hum Mol Genet. 1992 Nov;1(8):579–585. doi: 10.1093/hmg/1.8.579. [DOI] [PubMed] [Google Scholar]
  26. Walker A. P., Muscatelli F., Monaco A. P. Isolation of the human Xp21 glycerol kinase gene by positional cloning. Hum Mol Genet. 1993 Feb;2(2):107–114. doi: 10.1093/hmg/2.2.107. [DOI] [PubMed] [Google Scholar]
  27. Wirth A., Heuck C. C., Bieger W., Schlierf G. Pseudo-Hypertriglyceridämie bei Glycerokinase-Mangel. Dtsch Med Wochenschr. 1985 May 24;110(21):843–847. doi: 10.1055/s-2008-1068916. [DOI] [PubMed] [Google Scholar]
  28. Wise J. E., Matalon R., Morgan A. M., McCabe E. R. Phenotypic features of patients with congenital adrenal hypoplasia and glycerol kinase deficiency. Am J Dis Child. 1987 Jul;141(7):744–747. doi: 10.1001/archpedi.1987.04460070046020. [DOI] [PubMed] [Google Scholar]
  29. Zanaria E., Muscatelli F., Bardoni B., Strom T. M., Guioli S., Guo W., Lalli E., Moser C., Walker A. P., McCabe E. R. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature. 1994 Dec 15;372(6507):635–641. doi: 10.1038/372635a0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES