Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):3677–3683. doi: 10.1128/jvi.71.5.3677-3683.1997

The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus.

Y Wang 1, Z Xiang 1, S Pasquini 1, H C Ertl 1
PMCID: PMC191516  PMID: 9094641

Abstract

An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune response to the rabies virus glycoprotein, as presented by the Adrab.gp vaccine, on the other hand, was not impaired by maternal immunity. Even neonatal immunization of mice born to rabies virus-immune dams with Adrab.gp construct resulted in a long-lasting protective immune response to rabies virus, suggesting that this type of vaccine could be useful for immunization shortly after birth. Nevertheless, pups born to Adrab.gp virus-immune dams showed an impaired immune response to the rabies virus glycoprotein upon vaccination with the Adrab.gp virus, indicating that maternal immunity to the vaccine carrier affected the offspring's immune response to rabies virus.

Full Text

The Full Text of this article is available as a PDF (161.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghomo H. O., Oduye O. O., Rupprecht C. E. The serological response of young dogs to the Flury LEP strain of rabies virus vaccine. Vet Res Commun. 1990;14(5):415–425. doi: 10.1007/BF00343220. [DOI] [PubMed] [Google Scholar]
  2. Albrecht P., Ennis F. A., Saltzman E. J., Krugman S. Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. J Pediatr. 1977 Nov;91(5):715–718. doi: 10.1016/s0022-3476(77)81021-4. [DOI] [PubMed] [Google Scholar]
  3. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
  4. Bangham C. R. Passively acquired antibodies to respiratory syncytial virus impair the secondary cytotoxic T-cell response in the neonatal mouse. Immunology. 1986 Sep;59(1):37–41. [PMC free article] [PubMed] [Google Scholar]
  5. Ertl H. C., Dietzschold B., Gore M., Otvos L., Jr, Larson J. K., Wunner W. H., Koprowski H. Induction of rabies virus-specific T-helper cells by synthetic peptides that carry dominant T-helper cell epitopes of the viral ribonucleoprotein. J Virol. 1989 Jul;63(7):2885–2892. doi: 10.1128/jvi.63.7.2885-2892.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Francis M. J., Black L. Response of young pigs to foot-and-mouth disease oil emulsion vaccination in the presence and absence of maternally derived neutralising antibodies. Res Vet Sci. 1986 Jul;41(1):33–39. [PubMed] [Google Scholar]
  7. Ginsberg H. S., Lundholm-Beauchamp U., Horswood R. L., Pernis B., Wold W. S., Chanock R. M., Prince G. A. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci U S A. 1989 May;86(10):3823–3827. doi: 10.1073/pnas.86.10.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  9. Harte P. G., De Souza J. B., Playfair J. H. Failure of malaria vaccination in mice born to immune mothers. Clin Exp Immunol. 1982 Sep;49(3):509–516. [PMC free article] [PubMed] [Google Scholar]
  10. Harte P. G., Playfair J. H. Failure of malaria vaccination in mice born to immune mothers. II. Induction of specific suppressor cells by maternal IgG. Clin Exp Immunol. 1983 Jan;51(1):157–164. [PMC free article] [PubMed] [Google Scholar]
  11. Kim H. W., Arrobio J. O., Brandt C. D., Jeffries B. C., Pyles G., Reid J. L., Chanock R. M., Parrott R. H. Epidemiology of respiratory syncytial virus infection in Washington, D.C. I. Importance of the virus in different respiratory tract disease syndromes and temporal distribution of infection. Am J Epidemiol. 1973 Sep;98(3):216–225. doi: 10.1093/oxfordjournals.aje.a121550. [DOI] [PubMed] [Google Scholar]
  12. Kohl S., Loo L. S. The relative role of transplacental and milk immune transfer in protection against lethal neonatal herpes simplex virus infection in mice. J Infect Dis. 1984 Jan;149(1):38–42. doi: 10.1093/infdis/149.1.38. [DOI] [PubMed] [Google Scholar]
  13. Lassila O., Vainio O., Matzinger P. Can B cells turn on virgin T cells? Nature. 1988 Jul 21;334(6179):253–255. doi: 10.1038/334253a0. [DOI] [PubMed] [Google Scholar]
  14. Lifely M. R., Esdaile J., Moreno C. Passive transfer of meningococcal group B polysaccharide antibodies to the offspring of pregnant rabbits and their protective role against infection with Escherichia coli K1. Vaccine. 1989 Feb;7(1):17–21. doi: 10.1016/0264-410x(89)90005-4. [DOI] [PubMed] [Google Scholar]
  15. Mosier D. E., Zaldivar N. M., Goldings E., Mond J., Scher I., Paul W. E. Formation of antibody in the newborn mouse: study of T-cell-independent antibody response. J Infect Dis. 1977 Aug;136 (Suppl):S14–S19. doi: 10.1093/infdis/136.supplement.s14. [DOI] [PubMed] [Google Scholar]
  16. Reuman P. D., Paganini C. M., Ayoub E. M., Small P. A., Jr Maternal-infant transfer of influenza-specific immunity in the mouse. J Immunol. 1983 Feb;130(2):932–936. [PubMed] [Google Scholar]
  17. Ridge J. P., Fuchs E. J., Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996 Mar 22;271(5256):1723–1726. doi: 10.1126/science.271.5256.1723. [DOI] [PubMed] [Google Scholar]
  18. Ridge J. P., Fuchs E. J., Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996 Mar 22;271(5256):1723–1726. doi: 10.1126/science.271.5256.1723. [DOI] [PubMed] [Google Scholar]
  19. Sarzotti M., Robbins D. S., Hoffman P. M. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science. 1996 Mar 22;271(5256):1726–1728. doi: 10.1126/science.271.5256.1726. [DOI] [PubMed] [Google Scholar]
  20. Sheridan J. F., Smith C. C., Manak M. M., Aurelian L. Prevention of rotavirus-induced diarrhea in neonatal mice born to dams immunized with empty capsids of simian rotavirus SA-11. J Infect Dis. 1984 Mar;149(3):434–438. doi: 10.1093/infdis/149.3.434. [DOI] [PubMed] [Google Scholar]
  21. Wiktor T. J., Dietzschold B., Leamnson R. N., Koprowski H. Induction and biological properties of defective interfering particles of rabies virus. J Virol. 1977 Feb;21(2):626–635. doi: 10.1128/jvi.21.2.626-635.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wiktor T. J. Laboratoty techniques in rabies: tissue culture methods. Monogr Ser World Health Organ. 1973;(23):101–123. [PubMed] [Google Scholar]
  23. Wiktor T. J., Macfarlan R. I., Reagan K. J., Dietzschold B., Curtis P. J., Wunner W. H., Kieny M. P., Lathe R., Lecocq J. P., Mackett M. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7194–7198. doi: 10.1073/pnas.81.22.7194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xiang Z. Q., Ertl H. C. Transfer of maternal antibodies results in inhibition of specific immune responses in the offspring. Virus Res. 1992 Aug;24(3):297–314. doi: 10.1016/0168-1702(92)90125-s. [DOI] [PubMed] [Google Scholar]
  25. Xiang Z. Q., Knowles B. B., McCarrick J. W., Ertl H. C. Immune effector mechanisms required for protection to rabies virus. Virology. 1995 Dec 20;214(2):398–404. doi: 10.1006/viro.1995.0049. [DOI] [PubMed] [Google Scholar]
  26. Xiang Z. Q., Yang Y., Wilson J. M., Ertl H. C. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology. 1996 May 1;219(1):220–227. doi: 10.1006/viro.1996.0239. [DOI] [PubMed] [Google Scholar]
  27. Yang Y., Ertl H. C., Wilson J. M. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994 Aug;1(5):433–442. doi: 10.1016/1074-7613(94)90074-4. [DOI] [PubMed] [Google Scholar]
  28. Yang Y., Janich S., Cohn J. A., Wilson J. M. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9480–9484. doi: 10.1073/pnas.90.20.9480. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES