Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):3726–3733. doi: 10.1128/jvi.71.5.3726-3733.1997

The geminivirus BL1 movement protein is associated with endoplasmic reticulum-derived tubules in developing phloem cells.

B M Ward 1, R Medville 1, S G Lazarowitz 1, R Turgeon 1
PMCID: PMC191522  PMID: 9094647

Abstract

Plant viruses encode movement proteins that are essential for systemic infection of their host but dispensable for replication and encapsidation. BL1, one of the two movement proteins encoded by the bipartite geminivirus squash leaf curl virus, was immunolocalized to unique approximately 40-nm tubules that extended up to and across the walls of procambial cells in systemically infected pumpkin leaves. These tubules were not found in procambial cells from pumpkin seedlings inoculated with BL1 mutants that are defective in movement. The tubules also specifically stained with antisera to binding protein (BiP), indicating that they were derived from the endoplasmic reticulum. Independent confirmation of this endoplasmic reticulum association was obtained by subcellular fractionation studies in which BL1 was localized to fractions that contained both endoplasmic reticulum membranes and BiP. Thus, squash leaf curl virus appears to recruit the endoplasmic reticulum as a conduit for cell-to-cell movement of the viral genome.

Full Text

The Full Text of this article is available as a PDF (828.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. V., Li Q. B., Haskell D. W., Guy C. L. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol. 1994 Apr;104(4):1359–1370. doi: 10.1104/pp.104.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atabekov J. G., Dorokhov YuL Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res. 1984;29:313–364. doi: 10.1016/s0065-3527(08)60412-1. [DOI] [PubMed] [Google Scholar]
  3. Ben-Ze'ev A., Abulafia R., Aloni Y. SV40 virions and viral RNA metabolism are associated with cellular substructures. EMBO J. 1982;1(10):1225–1231. doi: 10.1002/j.1460-2075.1982.tb00017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bush D. R. Proton-Coupled Sucrose Transport in Plasmalemma Vesicles Isolated from Sugar Beet (Beta vulgaris L. cv Great Western) Leaves. Plant Physiol. 1989 Apr;89(4):1318–1323. doi: 10.1104/pp.89.4.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chatterjee P. K., Cervera M. M., Penman S. Formation of vesicular stomatitis virus nucleocapsid from cytoskeletal framework-bound N protein: possible model for structure assembly. Mol Cell Biol. 1984 Oct;4(10):2231–2234. doi: 10.1128/mcb.4.10.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  7. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992 Apr;4(4):397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Citovsky V., Zambryski P. Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol. 1993;47:167–197. doi: 10.1146/annurev.mi.47.100193.001123. [DOI] [PubMed] [Google Scholar]
  9. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Epel B. L. Plasmodesmata: composition, structure and trafficking. Plant Mol Biol. 1994 Dec;26(5):1343–1356. doi: 10.1007/BF00016479. [DOI] [PubMed] [Google Scholar]
  11. Etessami P., Callis R., Ellwood S., Stanley J. Delimitation of essential genes of cassava latent virus DNA 2. Nucleic Acids Res. 1988 Jun 10;16(11):4811–4829. doi: 10.1093/nar/16.11.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fontes E. B., Shank B. B., Wrobel R. L., Moose S. P., OBrian G. R., Wurtzel E. T., Boston R. S. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell. 1991 May;3(5):483–496. doi: 10.1105/tpc.3.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujiwara T., Giesman-Cookmeyer D., Ding B., Lommel S. A., Lucas W. J. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein. Plant Cell. 1993 Dec;5(12):1783–1794. doi: 10.1105/tpc.5.12.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gillikin J. W., Fontes E. P., Boston R. S. Protein--protein interactions within the endoplasmic reticulum. Methods Cell Biol. 1995;50:309–323. [PubMed] [Google Scholar]
  15. Goldbach R., Wellink J., Verver J., van Kammen A., Kasteel D., van Lent J. Adaptation of positive-strand RNA viruses to plants. Arch Virol Suppl. 1994;9:87–97. doi: 10.1007/978-3-7091-9326-6_10. [DOI] [PubMed] [Google Scholar]
  16. Heinlein M., Epel B. L., Padgett H. S., Beachy R. N. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science. 1995 Dec 22;270(5244):1983–1985. doi: 10.1126/science.270.5244.1983. [DOI] [PubMed] [Google Scholar]
  17. Ingham D. J., Pascal E., Lazarowitz S. G. Both bipartite geminivirus movement proteins define viral host range, but only BL1 determines viral pathogenicity. Virology. 1995 Feb 20;207(1):191–204. doi: 10.1006/viro.1995.1066. [DOI] [PubMed] [Google Scholar]
  18. Kormelink R., Storms M., Van Lent J., Peters D., Goldbach R. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology. 1994 Apr;200(1):56–65. doi: 10.1006/viro.1994.1162. [DOI] [PubMed] [Google Scholar]
  19. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lazarowitz S. G., Lazdins I. B. Infectivity and complete nucleotide sequence of the cloned genomic components of a bipartite squash leaf curl geminivirus with a broad host range phenotype. Virology. 1991 Jan;180(1):58–69. doi: 10.1016/0042-6822(91)90009-z. [DOI] [PubMed] [Google Scholar]
  22. Lazarowitz S. G. Molecular characterization of two bipartite geminiviruses causing squash leaf curl disease: role of viral replication and movement functions in determining host range. Virology. 1991 Jan;180(1):70–80. doi: 10.1016/0042-6822(91)90010-9. [DOI] [PubMed] [Google Scholar]
  23. Malyshenko S. I., Kondakova O. A., Nazarova JuV, Kaplan I. B., Taliansky M. E., Atabekov J. G. Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol. 1993 Jun;74(Pt 6):1149–1156. doi: 10.1099/0022-1317-74-6-1149. [DOI] [PubMed] [Google Scholar]
  24. McLean B. G., Zupan J., Zambryski P. C. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell. 1995 Dec;7(12):2101–2114. doi: 10.1105/tpc.7.12.2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McMillan D. R., Gething M. J., Sambrook J. The cellular response to unfolded proteins: intercompartmental signaling. Curr Opin Biotechnol. 1994 Oct;5(5):540–545. doi: 10.1016/0958-1669(94)90071-x. [DOI] [PubMed] [Google Scholar]
  26. Noueiry A. O., Lucas W. J., Gilbertson R. L. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell. 1994 Mar 11;76(5):925–932. doi: 10.1016/0092-8674(94)90366-2. [DOI] [PubMed] [Google Scholar]
  27. Padidam M., Beachy R. N., Fauquet C. M. Classification and identification of geminiviruses using sequence comparisons. J Gen Virol. 1995 Feb;76(Pt 2):249–263. doi: 10.1099/0022-1317-76-2-249. [DOI] [PubMed] [Google Scholar]
  28. Pascal E., Goodlove P. E., Wu L. C., Lazarowitz S. G. Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell. 1993 Jul;5(7):795–807. doi: 10.1105/tpc.5.7.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pascal E., Sanderfoot A. A., Ward B. M., Medville R., Turgeon R., Lazarowitz S. G. The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell. 1994 Jul;6(7):995–1006. doi: 10.1105/tpc.6.7.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Penfold M. E., Armati P., Cunningham A. L. Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6529–6533. doi: 10.1073/pnas.91.14.6529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Perbal M. C., Thomas C. L., Maule A. J. Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology. 1993 Jul;195(1):281–285. doi: 10.1006/viro.1993.1375. [DOI] [PubMed] [Google Scholar]
  32. Quinlan M. P., Knipe D. M. Nuclear localization of herpesvirus proteins: potential role for the cellular framework. Mol Cell Biol. 1983 Mar;3(3):315–324. doi: 10.1128/mcb.3.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanderfoot A. A., Ingham D. J., Lazarowitz S. G. A viral movement protein as a nuclear shuttle. The geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol. 1996 Jan;110(1):23–33. doi: 10.1104/pp.110.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sanderfoot A. A., Lazarowitz S. G. Cooperation in Viral Movement: The Geminivirus BL1 Movement Protein Interacts with BR1 and Redirects It from the Nucleus to the Cell Periphery. Plant Cell. 1995 Aug;7(8):1185–1194. doi: 10.1105/tpc.7.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanderfoot A. A., Lazarowitz S. G. Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol. 1996 Sep;6(9):353–358. doi: 10.1016/0962-8924(96)10031-3. [DOI] [PubMed] [Google Scholar]
  36. Stanley J. The molecular biology of geminiviruses. Adv Virus Res. 1985;30:139–177. doi: 10.1016/s0065-3527(08)60450-9. [DOI] [PubMed] [Google Scholar]
  37. Storms M. M., Kormelink R., Peters D., Van Lent J. W., Goldbach R. W. The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology. 1995 Dec 20;214(2):485–493. doi: 10.1006/viro.1995.0059. [DOI] [PubMed] [Google Scholar]
  38. Topp K. S., Meade L. B., LaVail J. H. Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus. J Neurosci. 1994 Jan;14(1):318–325. doi: 10.1523/JNEUROSCI.14-01-00318.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Waigmann E., Lucas W. J., Citovsky V., Zambryski P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1433–1437. doi: 10.1073/pnas.91.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wellink J., van Lent J. W., Verver J., Sijen T., Goldbach R. W., van Kammen A. The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol. 1993 Jun;67(6):3660–3664. doi: 10.1128/jvi.67.6.3660-3664.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wieczorek A., Sanfaçon H. Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology. 1993 Jun;194(2):734–742. doi: 10.1006/viro.1993.1314. [DOI] [PubMed] [Google Scholar]
  42. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]
  43. van Lent J., Storms M., van der Meer F., Wellink J., Goldbach R. Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol. 1991 Nov;72(Pt 11):2615–2623. doi: 10.1099/0022-1317-72-11-2615. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES