Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):3799–3810. doi: 10.1128/jvi.71.5.3799-3810.1997

Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus.

P D Nagy 1, J J Bujarski 1
PMCID: PMC191530  PMID: 9094655

Abstract

Previously, we observed that crossovers sites of RNA recombinants clustered within or close to AU-rich regions during genetic recombination in brome mosaic bromovirus (BMV) (P. D. Nagy and J. J. Bujarski. J. Virol. 70:415-426, 1996). To test whether AU-rich sequences can facilitate homologous recombination, AU-rich sequences were introduced into parental BMV RNAs (RNA2 and RNA3). These insertions created a homologous RNA2-RNA3 recombination hotspot. Two other AU-rich sequences also supported high-frequency homologous recombination if a common sequence with high or average G/C content was present immediately upstream of the AU-rich element. Homologous RNA recombination did not require any additional sequence motifs or RNA structures and was position nonspecific within the 3' noncoding region. These results suggest that nucleotide content (i.e., the presence of common 5' GC-rich or moderately AU-rich and 3' AU-rich regions) is the important factor that determines the sites of homologous recombination. A mechanism that involves replicase switching during synthesis of positive-sense RNA strands is presented to explain the observed results.

Full Text

The Full Text of this article is available as a PDF (542.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlquist P. Bromovirus RNA replication and transcription. Curr Opin Genet Dev. 1992 Feb;2(1):71–76. doi: 10.1016/s0959-437x(05)80325-9. [DOI] [PubMed] [Google Scholar]
  2. Ahlquist P., Dasgupta R., Kaesberg P. Nucleotide sequence of the brome mosaic virus genome and its implications for viral replication. J Mol Biol. 1984 Feb 5;172(4):369–383. doi: 10.1016/s0022-2836(84)80012-1. [DOI] [PubMed] [Google Scholar]
  3. Allison R. F., Janda M., Ahlquist P. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Virology. 1989 Sep;172(1):321–330. doi: 10.1016/0042-6822(89)90134-7. [DOI] [PubMed] [Google Scholar]
  4. Andino R., Rieckhof G. E., Baltimore D. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell. 1990 Oct 19;63(2):369–380. doi: 10.1016/0092-8674(90)90170-j. [DOI] [PubMed] [Google Scholar]
  5. Bujarski J. J., Dzianott A. M. Generation and analysis of nonhomologous RNA-RNA recombinants in brome mosaic virus: sequence complementarities at crossover sites. J Virol. 1991 Aug;65(8):4153–4159. doi: 10.1128/jvi.65.8.4153-4159.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bujarski J. J., Kaesberg P. Genetic recombination between RNA components of a multipartite plant virus. 1986 May 29-Jun 4Nature. 321(6069):528–531. doi: 10.1038/321528a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bujarski J. J., Nagy P. D., Flasinski S. Molecular studies of genetic RNA-RNA recombination in brome mosaic virus. Adv Virus Res. 1994;43:275–302. doi: 10.1016/S0065-3527(08)60051-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carpenter C. D., Oh J. W., Zhang C., Simon A. E. Involvement of a stem-loop structure in the location of junction sites in viral RNA recombination. J Mol Biol. 1995 Feb 3;245(5):608–622. doi: 10.1006/jmbi.1994.0050. [DOI] [PubMed] [Google Scholar]
  9. Cascone P. J., Carpenter C. D., Li X. H., Simon A. E. Recombination between satellite RNAs of turnip crinkle virus. EMBO J. 1990 Jun;9(6):1709–1715. doi: 10.1002/j.1460-2075.1990.tb08294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cascone P. J., Haydar T. F., Simon A. E. Sequences and structures required for recombination between virus-associated RNAs. Science. 1993 May 7;260(5109):801–805. doi: 10.1126/science.8484119. [DOI] [PubMed] [Google Scholar]
  11. Coffin J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol. 1979 Jan;42(1):1–26. doi: 10.1099/0022-1317-42-1-1. [DOI] [PubMed] [Google Scholar]
  12. Jarvis T. C., Kirkegaard K. The polymerase in its labyrinth: mechanisms and implications of RNA recombination. Trends Genet. 1991 Jun;7(6):186–191. doi: 10.1016/0168-9525(91)90434-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kroner P., Richards D., Traynor P., Ahlquist P. Defined mutations in a small region of the brome mosaic virus 2 gene cause diverse temperature-sensitive RNA replication phenotypes. J Virol. 1989 Dec;63(12):5302–5309. doi: 10.1128/jvi.63.12.5302-5309.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuge S., Saito I., Nomoto A. Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanisms of the particles. J Mol Biol. 1986 Dec 5;192(3):473–487. doi: 10.1016/0022-2836(86)90270-6. [DOI] [PubMed] [Google Scholar]
  16. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lang W. H., Reeder R. H. Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9781–9785. doi: 10.1073/pnas.92.21.9781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Luo G. X., Taylor J. Template switching by reverse transcriptase during DNA synthesis. J Virol. 1990 Sep;64(9):4321–4328. doi: 10.1128/jvi.64.9.4321-4328.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Macdonald L. E., Zhou Y., McAllister W. T. Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol. 1993 Aug 20;232(4):1030–1047. doi: 10.1006/jmbi.1993.1458. [DOI] [PubMed] [Google Scholar]
  20. Nagy P. D., Bujarski J. J. Efficient system of homologous RNA recombination in brome mosaic virus: sequence and structure requirements and accuracy of crossovers. J Virol. 1995 Jan;69(1):131–140. doi: 10.1128/jvi.69.1.131-140.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagy P. D., Bujarski J. J. Genetic recombination in brome mosaic virus: effect of sequence and replication of RNA on accumulation of recombinants. J Virol. 1992 Nov;66(11):6824–6828. doi: 10.1128/jvi.66.11.6824-6828.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nagy P. D., Bujarski J. J. Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers. J Virol. 1996 Jan;70(1):415–426. doi: 10.1128/jvi.70.1.415-426.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagy P. D., Bujarski J. J. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6390–6394. doi: 10.1073/pnas.90.14.6390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagy P. D., Dzianott A., Ahlquist P., Bujarski J. J. Mutations in the helicase-like domain of protein 1a alter the sites of RNA-RNA recombination in brome mosaic virus. J Virol. 1995 Apr;69(4):2547–2556. doi: 10.1128/jvi.69.4.2547-2556.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peliska J. A., Benkovic S. J. Fidelity of in vitro DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Biochemistry. 1994 Apr 5;33(13):3890–3895. doi: 10.1021/bi00179a014. [DOI] [PubMed] [Google Scholar]
  26. Pogany J., Romero J., Huang Q., Sgro J. Y., Shang H., Bujarski J. J. De novo generation of defective interfering-like RNAs in broad bean mottle bromovirus. Virology. 1995 Oct 1;212(2):574–586. doi: 10.1006/viro.1995.1515. [DOI] [PubMed] [Google Scholar]
  27. Pogue G. P., Hall T. C. The requirement for a 5' stem-loop structure in brome mosaic virus replication supports a new model for viral positive-strand RNA initiation. J Virol. 1992 Feb;66(2):674–684. doi: 10.1128/jvi.66.2.674-684.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rao A. L., Hall T. C. Recombination and polymerase error facilitate restoration of infectivity in brome mosaic virus. J Virol. 1993 Feb;67(2):969–979. doi: 10.1128/jvi.67.2.969-979.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rao A. L., Hall T. C. Requirement for a viral trans-acting factor encoded by brome mosaic virus RNA-2 provides strong selection in vivo for functional recombinants. J Virol. 1990 May;64(5):2437–2441. doi: 10.1128/jvi.64.5.2437-2441.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rao A. L., Sullivan B. P., Hall T. C. Use of Chenopodium hybridum facilitates isolation of brome mosaic virus RNA recombinants. J Gen Virol. 1990 Jun;71(Pt 6):1403–1407. doi: 10.1099/0022-1317-71-6-1403. [DOI] [PubMed] [Google Scholar]
  31. Romanova L. I., Blinov V. M., Tolskaya E. A., Viktorova E. G., Kolesnikova M. S., Guseva E. A., Agol V. I. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology. 1986 Nov;155(1):202–213. doi: 10.1016/0042-6822(86)90180-7. [DOI] [PubMed] [Google Scholar]
  32. Strauss J. H., Strauss E. G. Evolution of RNA viruses. Annu Rev Microbiol. 1988;42:657–683. doi: 10.1146/annurev.mi.42.100188.003301. [DOI] [PubMed] [Google Scholar]
  33. White K. A., Morris T. J. RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA. 1995 Dec;1(10):1029–1040. [PMC free article] [PubMed] [Google Scholar]
  34. White K. A., Morris T. J. Recombination between defective tombusvirus RNAs generates functional hybrid genomes. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3642–3646. doi: 10.1073/pnas.91.9.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu W., Blumberg B. M., Fay P. J., Bambara R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J Biol Chem. 1995 Jan 6;270(1):325–332. doi: 10.1074/jbc.270.1.325. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES