Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):3811–3816. doi: 10.1128/jvi.71.5.3811-3816.1997

Functional equivalence of common and unique sequences in the 3' untranslated regions of alfalfa mosaic virus RNAs 1, 2, and 3.

C M van Rossum 1, F T Brederode 1, L Neeleman 1, J F Bol 1
PMCID: PMC191531  PMID: 9094656

Abstract

The 3' untranslated regions (UTRs) of alfalfa mosaic virus (AMV) RNAs 1, 2, and 3 consist of a common 3'-terminal sequence of 145 nucleotides (nt) and upstream sequences of 18 to 34 nt that are unique for each RNA. The common sequence can be folded into five stem-loop structures, A to E, despite the occurrence of 22 nt differences between the three RNAs in this region. Exchange of the common sequences or full-length UTRs between the three genomic RNAs did not affect the replication of these RNAs in vivo, indicating that the UTRs are functionally equivalent. Mutations that disturbed base pairing in the stem of hairpin E reduced or abolished RNA replication, whereas compensating mutations restored RNA replication. In vitro, the 3' UTRs of the three RNAs were recognized with similar efficiencies by the AMV RNA-dependent RNA polymerase (RdRp). A deletion analysis of template RNAs indicated that a 3'-terminal sequence of 127 nt in each of the three AMV RNAs was not sufficient for recognition by the RdRp. Previously, it has been shown that this 127-nt sequence is sufficient for coat protein binding. Apparently, sequences required for recognition of AMV RNAs by the RdRp are longer than sequences required for CP binding.

Full Text

The Full Text of this article is available as a PDF (890.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bol J. F., van Vloten-Doting L., Jaspars E. M. A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology. 1971 Oct;46(1):73–85. doi: 10.1016/0042-6822(71)90007-9. [DOI] [PubMed] [Google Scholar]
  2. De Graaff M., Man in't Veld M. R., Jaspars E. M. In vitro evidence that the coat protein of alfalfa mosaic virus plays a direct role in the regulation of plus and minus RNA synthesis: implications for the life cycle of alfalfa mosaic virus. Virology. 1995 Apr 20;208(2):583–589. doi: 10.1006/viro.1995.1189. [DOI] [PubMed] [Google Scholar]
  3. Duggal R., Rao A. L., Hall T. C. Unique nucleotide differences in the conserved 3' termini of brome mosaic virus RNAs are maintained through their optimization of genome replication. Virology. 1992 Mar;187(1):261–270. doi: 10.1016/0042-6822(92)90314-f. [DOI] [PubMed] [Google Scholar]
  4. Eggen R., Verver J., Wellink J., Pleij K., van Kammen A., Goldbach R. Analysis of sequences involved in cowpea mosaic virus RNA replication using site-specific mutants. Virology. 1989 Dec;173(2):456–464. doi: 10.1016/0042-6822(89)90558-8. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  6. Ge X., Scott S. W. The nucleotide sequence of citrus leaf rugose ilarvirus RNA-2. J Gen Virol. 1994 Oct;75(Pt 10):2841–2846. doi: 10.1099/0022-1317-75-10-2841. [DOI] [PubMed] [Google Scholar]
  7. Houser-Scott F., Baer M. L., Liem K. F., Jr, Cai J. M., Gehrke L. Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4. J Virol. 1994 Apr;68(4):2194–2205. doi: 10.1128/jvi.68.4.2194-2205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishikawa M., Kroner P., Ahlquist P., Meshi T. Biological activities of hybrid RNAs generated by 3'-end exchanges between tobacco mosaic and brome mosaic viruses. J Virol. 1991 Jul;65(7):3451–3459. doi: 10.1128/jvi.65.7.3451-3459.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ishikawa M., Meshi T., Watanabe Y., Okada Y. Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3' noncoding regions. Virology. 1988 May;164(1):290–293. doi: 10.1016/0042-6822(88)90648-4. [DOI] [PubMed] [Google Scholar]
  10. Koper-Zwarthoff E. C., Bol J. F. Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus. Nucleic Acids Res. 1980 Aug 11;8(15):3307–3318. doi: 10.1093/nar/8.15.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyer F., Weber H., Weissmann C. Interactions of Q beta replicase with Q beta RNA. J Mol Biol. 1981 Dec 15;153(3):631–660. doi: 10.1016/0022-2836(81)90411-3. [DOI] [PubMed] [Google Scholar]
  12. Neeleman L., Van der Vossen E. A., Bol J. F. Infection of tobacco with alfalfa mosaic virus cDNAs sheds light on the early function of the coat protein. Virology. 1993 Oct;196(2):883–887. doi: 10.1006/viro.1993.1551. [DOI] [PubMed] [Google Scholar]
  13. Neeleman L., van der Kuyl A. C., Bol J. F. Role of alfalfa mosaic virus coat protein gene in symptom formation. Virology. 1991 Apr;181(2):687–693. doi: 10.1016/0042-6822(91)90902-n. [DOI] [PubMed] [Google Scholar]
  14. Quadt R., Rosdorff H. J., Hunt T. W., Jaspars E. M. Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology. 1991 May;182(1):309–315. doi: 10.1016/0042-6822(91)90674-z. [DOI] [PubMed] [Google Scholar]
  15. Rao A. L., Grantham G. L. Amplification in vivo of brome mosaic virus RNAs bearing 3' noncoding region from cucumber mosaic virus. Virology. 1994 Oct;204(1):478–481. doi: 10.1006/viro.1994.1559. [DOI] [PubMed] [Google Scholar]
  16. Reusken C. B., Bol J. F. Structural elements of the 3'-terminal coat protein binding site in alfalfa mosaic virus RNAs. Nucleic Acids Res. 1996 Jul 15;24(14):2660–2665. doi: 10.1093/nar/24.14.2660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reusken C. B., Neeleman L., Bol J. F. The 3'-untranslated region of alfalfa mosaic virus RNA 3 contains at least two independent binding sites for viral coat protein. Nucleic Acids Res. 1994 Apr 25;22(8):1346–1353. doi: 10.1093/nar/22.8.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rohll J. B., Holness C. L., Lomonossoff G. P., Maule A. J. 3'-terminal nucleotide sequences important for the accumulation of cowpea mosaic virus M-RNA. Virology. 1993 Apr;193(2):672–679. doi: 10.1006/viro.1993.1175. [DOI] [PubMed] [Google Scholar]
  19. Scott S. W., Ge X. The complete nucleotide sequence of RNA 3 of citrus leaf rugose and citrus variegation ilarviruses. J Gen Virol. 1995 Apr;76(Pt 4):957–963. doi: 10.1099/0022-1317-76-4-957. [DOI] [PubMed] [Google Scholar]
  20. Scott S. W., Ge X. The nucleotide sequence of citrus leaf rugose virus RNA 1. J Gen Virol. 1995 Dec;76(Pt 12):3233–3238. doi: 10.1099/0022-1317-76-12-3233. [DOI] [PubMed] [Google Scholar]
  21. Skuzeski J. M., Bozarth C. S., Dreher T. W. The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3' untranslated regions known to enhance mRNA expression and stability. J Virol. 1996 Apr;70(4):2107–2115. doi: 10.1128/jvi.70.4.2107-2115.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taschner P. E., van der Kuyl A. C., Neeleman L., Bol J. F. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology. 1991 Apr;181(2):445–450. doi: 10.1016/0042-6822(91)90876-d. [DOI] [PubMed] [Google Scholar]
  23. Van Bokhoven H., Le Gall O., Kasteel D., Verver J., Wellink J., Van Kammen A. B. Cis- and trans-acting elements in cowpea mosaic virus RNA replication. Virology. 1993 Aug;195(2):377–386. doi: 10.1006/viro.1993.1387. [DOI] [PubMed] [Google Scholar]
  24. van Rossum C. M., Garcia M. L., Bol J. F. Accumulation of alfalfa mosaic virus RNAs 1 and 2 requires the encoded proteins in cis. J Virol. 1996 Aug;70(8):5100–5105. doi: 10.1128/jvi.70.8.5100-5105.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van der Kuyl A. C., Langereis K., Houwing C. J., Jaspars E. M., Bol J. F. cis-acting elements involved in replication of alfalfa mosaic virus RNAs in vitro. Virology. 1990 Jun;176(2):346–354. doi: 10.1016/0042-6822(90)90004-b. [DOI] [PubMed] [Google Scholar]
  26. van der Kuyl A. C., Neeleman L., Bol J. F. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants. Virology. 1991 Aug;183(2):731–738. doi: 10.1016/0042-6822(91)91002-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Kuyl A. C., Neeleman L., Bol J. F. Deletion analysis of cis- and trans-acting elements involved in replication of alfalfa mosaic virus RNA 3 in vivo. Virology. 1991 Aug;183(2):687–694. doi: 10.1016/0042-6822(91)90997-p. [DOI] [PubMed] [Google Scholar]
  28. van der Vossen E. A., Neeleman L., Bol J. F. Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology. 1994 Aug 1;202(2):891–903. doi: 10.1006/viro.1994.1411. [DOI] [PubMed] [Google Scholar]
  29. van der Vossen E. A., Reusken C. B., Bol J. F. cis-preferential stimulation of alfalfa mosaic virus RNA 3 accumulation by the viral coat protein. Virology. 1996 Jun 1;220(1):163–170. doi: 10.1006/viro.1996.0296. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES