Abstract
Equine infectious anemia virus (EIAV) provides a natural model system by which immunological control of lentivirus infections may be studied. To date, no detailed study addressing in parallel both the humoral and cellular immune responses induced in horses upon infection by EIAV has been conducted. Therefore, we initiated the first comprehensive characterization of the cellular and humoral immune responses during clinical progression from chronic disease to inapparent stages of EIAV infection. Using new analyses of antibody avidity and antibody epitope conformation dependence that had not been previously employed in this system, we observed that the humoral immune response to EIAV required a 6- to 8-month period in which to fully mature. During this time frame, EIAV-specific antibody evolved gradually from a population characterized by low-avidity, nonneutralizing, and predominantly linear epitope specificity to an antibody population with an avidity of moderate to high levels, neutralizing activity, and predominantly conformational epitope specificity. Analyses of the cell-mediated immune response to EIAV revealed CD4+ and CD8+ major histocompatibility complex-restricted, EIAV-specific cytotoxic T-lymphocyte (CTL) activity apparent within 3 to 4 weeks postinfection, temporally correlating with the resolution of the primary viremia. After resolution of the initial viremia, EIAV-specific CTL activity differed greatly among the experimentally infected ponies, with some animals having readily detectable CTL activity while others had little measurable CTL activity. Thus, in contrast to the initial viremia, it appeared that no single immune parameter correlated with the resolution of further viremic episodes. Instead, immune control of EIAV infection during the clinically inapparent stage of infection appears to rely on a complex combination of immune system mechanisms to suppress viral replication that effectively functions only after the immune system has evolved to a fully mature state 6 to 8 months postinfection. These findings strongly imply the necessity for candidate EIAV and other lentivirus vaccines to achieve this immune system maturation for efficacious immunological control of lentivirus challenge.
Full Text
The Full Text of this article is available as a PDF (296.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen G., Yeargan M., Costa L. R., Cross R. Major histocompatibility complex class I-restricted cytotoxic T-lymphocyte responses in horses infected with equine herpesvirus 1. J Virol. 1995 Jan;69(1):606–612. doi: 10.1128/jvi.69.1.606-612.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antczak D. F., Bailey E., Barger B., Guerin G., Lazary S., McClure J., Mottironi V. D., Symons R., Templeton J., Varewyck H. Joint report of the Third International Workshop on Lymphocyte Alloantigens of the Horse, Kennett Square, Pennsylvania, 25-27 April 1984. Anim Genet. 1986;17(4):363–373. doi: 10.1111/j.1365-2052.1986.tb00730.x. [DOI] [PubMed] [Google Scholar]
- Bailey E. Identification and genetics of horse lymphocyte alloantigens. Immunogenetics. 1980;11(5):499–506. doi: 10.1007/BF01567818. [DOI] [PubMed] [Google Scholar]
- Bailey E. Population studies on the ELA system in American standardbred and thoroughbred mares. Anim Blood Groups Biochem Genet. 1983;14(3):201–211. doi: 10.1111/j.1365-2052.1983.tb01073.x. [DOI] [PubMed] [Google Scholar]
- Ball J. M., Rao V. S., Robey W. G., Issel C. J., Montelaro R. C. Lentivirus antigen purification and characterization: isolation of equine infectious anemia virus gag and env proteins in one step by reverse phase HPLC and application to human immunodeficiency virus glycoproteins. J Virol Methods. 1988 Mar-Apr;19(3-4):265–277. doi: 10.1016/0166-0934(88)90021-3. [DOI] [PubMed] [Google Scholar]
- Ball J. M., Rushlow K. E., Issel C. J., Montelaro R. C. Detailed mapping of the antigenicity of the surface unit glycoprotein of equine infectious anemia virus by using synthetic peptide strategies. J Virol. 1992 Feb;66(2):732–742. doi: 10.1128/jvi.66.2.732-742.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borrow P., Lewicki H., Hahn B. H., Shaw G. M., Oldstone M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994 Sep;68(9):6103–6110. doi: 10.1128/jvi.68.9.6103-6110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. R. Immunological functions of splenic B-lymphocytes. Crit Rev Immunol. 1992;11(6):395–417. [PubMed] [Google Scholar]
- CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
- Carpenter S., Evans L. H., Sevoian M., Chesebro B. Role of the host immune response in selection of equine infectious anemia virus variants. J Virol. 1987 Dec;61(12):3783–3789. doi: 10.1128/jvi.61.12.3783-3789.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol. 1985 Dec;5(12):3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianciolo G. J., Bogerd H., Snyderman R. Human retrovirus-related synthetic peptides inhibit T lymphocyte proliferation. Immunol Lett. 1988 Sep;19(1):7–13. doi: 10.1016/0165-2478(88)90112-5. [DOI] [PubMed] [Google Scholar]
- Clements J. E., Montelaro R. C., Zink M. C., Amedee A. M., Miller S., Trichel A. M., Jagerski B., Hauer D., Martin L. N., Bohm R. P. Cross-protective immune responses induced in rhesus macaques by immunization with attenuated macrophage-tropic simian immunodeficiency virus. J Virol. 1995 May;69(5):2737–2744. doi: 10.1128/jvi.69.5.2737-2744.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferris R. L., Buck C., Hammond S. A., Woods A. S., Cotter R. J., Takiguchi M., Igarashi Y., Ichikawa Y., Siliciano R. F. Class I-restricted presentation of an HIV-1 gp41 epitope containing an N-linked glycosylation site. Implications for the mechanism of processing of viral envelope proteins. J Immunol. 1996 Jan 15;156(2):834–840. [PubMed] [Google Scholar]
- Fujimiya Y., Perryman L. E., Crawford T. B. Leukocyte cytotoxicity in a persistent virus infection: presence of direct cytotoxicity but absence of antibody-dependent cellular cytotoxicity in horses infected with equine infectious anemia virus. Infect Immun. 1979 Jun;24(3):628–636. doi: 10.1128/iai.24.3.628-636.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner M., Rosenthal A., Jennings M., Yee J., Antipa L., Robinson E., Jr Passive immunization of rhesus macaques against SIV infection and disease. AIDS Res Hum Retroviruses. 1995 Jul;11(7):843–854. doi: 10.1089/aid.1995.11.843. [DOI] [PubMed] [Google Scholar]
- Germain R. N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell. 1994 Jan 28;76(2):287–299. doi: 10.1016/0092-8674(94)90336-0. [DOI] [PubMed] [Google Scholar]
- Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutekunst D. E., Becvar C. S. Responses in horses infected with equine infectious anemia virus adapted to tissue culture. Am J Vet Res. 1979 Jul;40(7):974–977. [PubMed] [Google Scholar]
- Hammond S. A., Bollinger R. C., Tobery T. W., Silliciano R. F. Transporter-independent processing of HIV-1 envelope protein for recognition by CD8+ T cells. Nature. 1993 Jul 8;364(6433):158–161. doi: 10.1038/364158a0. [DOI] [PubMed] [Google Scholar]
- Hammond S. A., Johnson R. P., Kalams S. A., Walker B. D., Takiguchi M., Safrit J. T., Koup R. A., Siliciano R. F. An epitope-selective, transporter associated with antigen presentation (TAP)-1/2-independent pathway and a more general TAP-1/2-dependent antigen-processing pathway allow recognition of the HIV-1 envelope glycoprotein by CD8+ CTL. J Immunol. 1995 Jun 1;154(11):6140–6156. [PubMed] [Google Scholar]
- Hedman K., Hietala J., Tiilikainen A., Hartikainen-Sorri A. L., Räihä K., Suni J., Vänänen P., Pietiläinen M. Maturation of immunoglobulin G avidity after rubella vaccination studied by an enzyme linked immunosorbent assay (avidity-ELISA) and by haemolysis typing. J Med Virol. 1989 Apr;27(4):293–298. doi: 10.1002/jmv.1890270407. [DOI] [PubMed] [Google Scholar]
- Hedman K., Rousseau S. A. Measurement of avidity of specific IgG for verification of recent primary rubella. J Med Virol. 1989 Apr;27(4):288–292. doi: 10.1002/jmv.1890270406. [DOI] [PubMed] [Google Scholar]
- Issel C. J., Adams W. V., Jr, Meek L., Ochoa R. Transmission of equine infectious anemia virus from horses without clinical signs of disease. J Am Vet Med Assoc. 1982 Feb 1;180(3):272–275. [PubMed] [Google Scholar]
- Issel C. J., Foil L. D. Studies on equine infectious anemia virus transmission by insects. J Am Vet Med Assoc. 1984 Feb 1;184(3):293–297. [PubMed] [Google Scholar]
- Issel C. J., Horohov D. W., Lea D. F., Adams W. V., Jr, Hagius S. D., McManus J. M., Allison A. C., Montelaro R. C. Efficacy of inactivated whole-virus and subunit vaccines in preventing infection and disease caused by equine infectious anemia virus. J Virol. 1992 Jun;66(6):3398–3408. doi: 10.1128/jvi.66.6.3398-3408.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kangro H. O., Manzoor S., Harper D. R. Antibody avidity following varicella-zoster virus infections. J Med Virol. 1991 Feb;33(2):100–105. doi: 10.1002/jmv.1890330207. [DOI] [PubMed] [Google Scholar]
- Kono Y., Kobayashi K., Fukunaga Y. Antigenic drift of equine infectious anemia virus in chronically infected horses. Arch Gesamte Virusforsch. 1973;41(1):1–10. doi: 10.1007/BF01249923. [DOI] [PubMed] [Google Scholar]
- Kono Y., Kobayashi K., Fukunaga Y. Immunization of horses against equine infectious anemia (EIA) with an attenuated EIA virus. Natl Inst Anim Health Q (Tokyo) 1970 Fall;10(3):113–122. [PubMed] [Google Scholar]
- Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau L. L., Jamieson B. D., Somasundaram T., Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994 Jun 23;369(6482):648–652. doi: 10.1038/369648a0. [DOI] [PubMed] [Google Scholar]
- Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990 Jun 25;265(18):10373–10382. [PubMed] [Google Scholar]
- Lew A. M., Anders R. F., Edwards S. J., Langford C. J. Comparison of antibody avidity and titre elicited by peptide as a protein conjugate or as expressed in vaccinia. Immunology. 1988 Oct;65(2):311–314. [PMC free article] [PubMed] [Google Scholar]
- Lichtenstein D. L., Rushlow K. E., Cook R. F., Raabe M. L., Swardson C. J., Kociba G. J., Issel C. J., Montelaro R. C. Replication in vitro and in vivo of an equine infectious anemia virus mutant deficient in dUTPase activity. J Virol. 1995 May;69(5):2881–2888. doi: 10.1128/jvi.69.5.2881-2888.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascola J. R., Mathieson B. J., Zack P. M., Walker M. C., Halstead S. B., Burke D. S. Summary report: workshop on the potential risks of antibody-dependent enhancement in human HIV vaccine trials. AIDS Res Hum Retroviruses. 1993 Dec;9(12):1175–1184. doi: 10.1089/aid.1993.9.1175. [DOI] [PubMed] [Google Scholar]
- McGuire T. C., Tumas D. B., Byrne K. M., Hines M. T., Leib S. R., Brassfield A. L., O'Rourke K. I., Perryman L. E. Major histocompatibility complex-restricted CD8+ cytotoxic T lymphocytes from horses with equine infectious anemia virus recognize Env and Gag/PR proteins. J Virol. 1994 Mar;68(3):1459–1467. doi: 10.1128/jvi.68.3.1459-1467.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montelaro R. C., Grund C., Raabe M., Woodson B., Cook R. F., Cook S., Issel C. J. Characterization of protective and enhancing immune responses to equine infectious anemia virus resulting from experimental vaccines. AIDS Res Hum Retroviruses. 1996 Mar 20;12(5):413–415. doi: 10.1089/aid.1996.12.413. [DOI] [PubMed] [Google Scholar]
- Montelaro R. C., Parekh B., Orrego A., Issel C. J. Antigenic variation during persistent infection by equine infectious anemia virus, a retrovirus. J Biol Chem. 1984 Aug 25;259(16):10539–10544. [PubMed] [Google Scholar]
- Montelaro R. C., West M., Issel C. J. Antigenic reactivity of the major glycoprotein of equine infectious anemia virus, a retrovirus. Virology. 1984 Jul 30;136(2):368–374. doi: 10.1016/0042-6822(84)90173-9. [DOI] [PubMed] [Google Scholar]
- Moore J. P., Cao Y., Ho D. D., Koup R. A. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol. 1994 Aug;68(8):5142–5155. doi: 10.1128/jvi.68.8.5142-5155.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müllbacher A. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J Exp Med. 1994 Jan 1;179(1):317–321. doi: 10.1084/jem.179.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman M. J., Issel C. J., Truax R. E., Powell M. D., Horohov D. W., Montelaro R. C. Transient suppression of equine immune responses by equine infectious anemia virus (EIAV). Virology. 1991 Sep;184(1):55–66. doi: 10.1016/0042-6822(91)90821-r. [DOI] [PubMed] [Google Scholar]
- O'Rourke K., Perryman L. E., McGuire T. C. Antiviral, anti-glycoprotein and neutralizing antibodies in foals with equine infectious anaemia virus. J Gen Virol. 1988 Mar;69(Pt 3):667–674. doi: 10.1099/0022-1317-69-3-667. [DOI] [PubMed] [Google Scholar]
- Oehen S., Waldner H., Kündig T. M., Hengartner H., Zinkernagel R. M. Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen. J Exp Med. 1992 Nov 1;176(5):1273–1281. doi: 10.1084/jem.176.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orrego A., Issel C. J., Montelaro R. C., Adams W. V., Jr Virulence and in vitro growth of a cell-adapted strain of equine infectious anemia virus after serial passage in ponies. Am J Vet Res. 1982 Sep;43(9):1556–1560. [PubMed] [Google Scholar]
- Parekh B. S., Pau C. P., Granade T. C., Rayfield M., De Cock K. M., Gayle H., Schochetman G., George J. R. Oligomeric nature of transmembrane glycoproteins of HIV-2: procedures for their efficient dissociation and preparation of Western blots for diagnosis. AIDS. 1991 Aug;5(8):1009–1013. [PubMed] [Google Scholar]
- Perryman L. E., O'Rourke K. I., McGuire T. C. Immune responses are required to terminate viremia in equine infectious anemia lentivirus infection. J Virol. 1988 Aug;62(8):3073–3076. doi: 10.1128/jvi.62.8.3073-3076.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pullen G. R., Fitzgerald M. G., Hosking C. S. Antibody avidity determination by ELISA using thiocyanate elution. J Immunol Methods. 1986 Jan 22;86(1):83–87. doi: 10.1016/0022-1759(86)90268-1. [DOI] [PubMed] [Google Scholar]
- Rammensee H. G. Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol. 1995 Feb;7(1):85–96. doi: 10.1016/0952-7915(95)80033-6. [DOI] [PubMed] [Google Scholar]
- Robinson J. E., Holton D., Liu J., McMurdo H., Murciano A., Gohd R. A novel enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to HIV-1 envelope glycoproteins based on immobilization of viral glycoproteins in microtiter wells coated with concanavalin A. J Immunol Methods. 1990 Aug 28;132(1):63–71. doi: 10.1016/0022-1759(90)90399-g. [DOI] [PubMed] [Google Scholar]
- Ruegg C. L., Monell C. R., Strand M. Inhibition of lymphoproliferation by a synthetic peptide with sequence identity to gp41 of human immunodeficiency virus type 1. J Virol. 1989 Aug;63(8):3257–3260. doi: 10.1128/jvi.63.8.3257-3260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rwambo P. M., Issel C. J., Adams W. V., Jr, Hussain K. A., Miller M., Montelaro R. C. Equine infectious anemia virus (EIAV) humoral responses of recipient ponies and antigenic variation during persistent infection. Arch Virol. 1990;111(3-4):199–212. doi: 10.1007/BF01311054. [DOI] [PubMed] [Google Scholar]
- Rwambo P. M., Issel C. J., Hussain K. A., Montelaro R. C. In vitro isolation of a neutralization escape mutant of equine infectious anemia virus (EIAV). Arch Virol. 1990;111(3-4):275–280. doi: 10.1007/BF01311062. [DOI] [PubMed] [Google Scholar]
- Salmi A. A. Antibody affinity and protection in virus infections. Curr Opin Immunol. 1991 Aug;3(4):503–506. doi: 10.1016/0952-7915(91)90011-o. [DOI] [PubMed] [Google Scholar]
- Selin L. K., Nahill S. R., Welsh R. M. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J Exp Med. 1994 Jun 1;179(6):1933–1943. doi: 10.1084/jem.179.6.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sellon D. C., Fuller F. J., McGuire T. C. The immunopathogenesis of equine infectious anemia virus. Virus Res. 1994 May;32(2):111–138. doi: 10.1016/0168-1702(94)90038-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sellon D. C., Perry S. T., Coggins L., Fuller F. J. Wild-type equine infectious anemia virus replicates in vivo predominantly in tissue macrophages, not in peripheral blood monocytes. J Virol. 1992 Oct;66(10):5906–5913. doi: 10.1128/jvi.66.10.5906-5913.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siliciano R. F., Keegan A. D., Dintzis R. Z., Dintzis H. M., Shin H. S. The interaction of nominal antigen with T cell antigen receptors. I. Specific binding of multivalent nominal antigen to cytolytic T cell clones. J Immunol. 1985 Aug;135(2):906–914. [PubMed] [Google Scholar]
- Siliciano R. F., Lawton T., Knall C., Karr R. W., Berman P., Gregory T., Reinherz E. L. Analysis of host-virus interactions in AIDS with anti-gp120 T cell clones: effect of HIV sequence variation and a mechanism for CD4+ cell depletion. Cell. 1988 Aug 12;54(4):561–575. doi: 10.1016/0092-8674(88)90078-5. [DOI] [PubMed] [Google Scholar]
- Siliciano R. F., Soloski M. J. MHC class I-restricted processing of transmembrane proteins. Mechanism and biologic significance. J Immunol. 1995 Jul 1;155(1):2–5. [PubMed] [Google Scholar]
- Ward K. N., Dhaliwal W., Ashworth K. L., Clutterbuck E. J., Teo C. G. Measurement of antibody avidity for hepatitis C virus distinguishes primary antibody responses from passively acquired antibody. J Med Virol. 1994 Aug;43(4):367–372. doi: 10.1002/jmv.1890430409. [DOI] [PubMed] [Google Scholar]
- Yewdell J. W., Bennink J. R. Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv Immunol. 1992;52:1–123. doi: 10.1016/s0065-2776(08)60875-5. [DOI] [PubMed] [Google Scholar]
- Zinkernagel R. M. Immunology taught by viruses. Science. 1996 Jan 12;271(5246):173–178. doi: 10.1126/science.271.5246.173. [DOI] [PubMed] [Google Scholar]