Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):3872–3878. doi: 10.1128/jvi.71.5.3872-3878.1997

Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir.

J J Sasadeusz 1, F Tufaro 1, S Safrin 1, K Schubert 1, M M Hubinette 1, P K Cheung 1, S L Sacks 1
PMCID: PMC191538  PMID: 9094663

Abstract

In the majority of cases, the mechanism underlying the resistance to acyclovir (ACV) of herpes simplex viruses (HSVs) is thymidine kinase (TK) deficiency. Plaque isolates from eight ACV-resistant (ACVr) clinical isolates from AIDS patients, of which five reactivated, were sequenced to determine the genetic lesion within the tk gene conferring resistance and whether this may have correlated with reactivation potential. Mutations were clustered within two homopolymer nucleotide stretches. Three plaque isolates (1737-14, 90-150-3, and 89-650-5) had insertion mutations within a stretch of 7 guanosines, while two isolates (89-063-1 and 89-353-1) had frameshift mutations within a stretch of 6 cytosines (a deletion and an insertion, respectively). Mutations resulted in premature termination codons, and the predicted 28- and 32-kDa truncated TK products were detected by Western blot analysis of virus-infected cell extracts. The repair of one homopolymer frameshift mutation (in isolate 1737-14) restored TK activity, demonstrating that this mutation is the basis of TK deficiency. Of the five reactivated isolates, four were TK deficient and contained frameshift mutations while the fifth retained TK activity because of its altered-TK or Pol- phenotype. These data demonstrate that the majority of ACVr clinical isolates contain frameshift mutations within two long homopolymer nucleotide stretches which function as hot spots within the HSV tk gene and produce nonfunctional, truncated TK proteins.

Full Text

The Full Text of this article is available as a PDF (904.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann B., Potash M. J., Köhler G. Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J. 1985 Feb;4(2):351–359. doi: 10.1002/j.1460-2075.1985.tb03636.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birch C. J., Tachedjian G., Doherty R. R., Hayes K., Gust I. D. Altered sensitivity to antiviral drugs of herpes simplex virus isolates from a patient with the acquired immunodeficiency syndrome. J Infect Dis. 1990 Sep;162(3):731–734. doi: 10.1093/infdis/162.3.731. [DOI] [PubMed] [Google Scholar]
  3. Breinig M. K., Kingsley L. A., Armstrong J. A., Freeman D. J., Ho M. Epidemiology of genital herpes in Pittsburgh: serologic, sexual, and racial correlates of apparent and inapparent herpes simplex infections. J Infect Dis. 1990 Aug;162(2):299–305. doi: 10.1093/infdis/162.2.299. [DOI] [PubMed] [Google Scholar]
  4. Burns W. H., Saral R., Santos G. W., Laskin O. L., Lietman P. S., McLaren C., Barry D. W. Isolation and characterisation of resistant Herpes simplex virus after acyclovir therapy. Lancet. 1982 Feb 20;1(8269):421–423. doi: 10.1016/s0140-6736(82)91620-8. [DOI] [PubMed] [Google Scholar]
  5. Chatis P. A., Crumpacker C. S. Analysis of the thymidine kinase gene from clinically isolated acyclovir-resistant herpes simplex viruses. Virology. 1991 Feb;180(2):793–797. doi: 10.1016/0042-6822(91)90093-q. [DOI] [PubMed] [Google Scholar]
  6. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4736–4740. doi: 10.1073/pnas.86.12.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins P., Larder B. A., Oliver N. M., Kemp S., Smith I. W., Darby G. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. J Gen Virol. 1989 Feb;70(Pt 2):375–382. doi: 10.1099/0022-1317-70-2-375. [DOI] [PubMed] [Google Scholar]
  8. Crumpacker C. S., Schnipper L. E., Marlowe S. I., Kowalsky P. N., Hershey B. J., Levin M. J. Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. N Engl J Med. 1982 Feb 11;306(6):343–346. doi: 10.1056/NEJM198202113060606. [DOI] [PubMed] [Google Scholar]
  9. Efstathiou S., Kemp S., Darby G., Minson A. C. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol. 1989 Apr;70(Pt 4):869–879. doi: 10.1099/0022-1317-70-4-869. [DOI] [PubMed] [Google Scholar]
  10. Ellis M. N., Keller P. M., Fyfe J. A., Martin J. L., Rooney J. F., Straus S. E., Lehrman S. N., Barry D. W. Clinical isolate of herpes simplex virus type 2 that induces a thymidine kinase with altered substrate specificity. Antimicrob Agents Chemother. 1987 Jul;31(7):1117–1125. doi: 10.1128/aac.31.7.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Englund J. A., Zimmerman M. E., Swierkosz E. M., Goodman J. L., Scholl D. R., Balfour H. H., Jr Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med. 1990 Mar 15;112(6):416–422. doi: 10.7326/0003-4819-76-3-112-6-416. [DOI] [PubMed] [Google Scholar]
  12. Erlich K. S., Mills J., Chatis P., Mertz G. J., Busch D. F., Follansbee S. E., Grant R. M., Crumpacker C. S. Acyclovir-resistant herpes simplex virus infections in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1989 Feb 2;320(5):293–296. doi: 10.1056/NEJM198902023200506. [DOI] [PubMed] [Google Scholar]
  13. Farabaugh P. J., Schmeissner U., Hofer M., Miller J. H. Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol. 1978 Dec 25;126(4):847–857. doi: 10.1016/0022-2836(78)90023-2. [DOI] [PubMed] [Google Scholar]
  14. Graham D., Larder B. A., Inglis M. M. Evidence that the 'active centre' of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. J Gen Virol. 1986 Apr;67(Pt 4):753–758. doi: 10.1099/0022-1317-67-4-753. [DOI] [PubMed] [Google Scholar]
  15. Hill E. L., Hunter G. A., Ellis M. N. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1991 Nov;35(11):2322–2328. doi: 10.1128/aac.35.11.2322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horsburgh B. C., Kollmus H., Hauser H., Coen D. M. Translational recoding induced by G-rich mRNA sequences that form unusual structures. Cell. 1996 Sep 20;86(6):949–959. doi: 10.1016/S0092-8674(00)80170-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hwang C. B., Chen H. J. An altered spectrum of herpes simplex virus mutations mediated by an antimutator DNA polymerase. Gene. 1995 Jan 23;152(2):191–193. doi: 10.1016/0378-1119(94)00712-2. [DOI] [PubMed] [Google Scholar]
  18. Hwang C. B., Horsburgh B., Pelosi E., Roberts S., Digard P., Coen D. M. A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5461–5465. doi: 10.1073/pnas.91.12.5461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kit S., Kit M., Qavi H., Trkula D., Otsuka H. Nucleotide sequence of the herpes simplex virus type 2 (HSV-2) thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide and its comparison with the HSV-1 thymidine kinase gene. Biochim Biophys Acta. 1983 Nov 17;741(2):158–170. doi: 10.1016/0167-4781(83)90056-8. [DOI] [PubMed] [Google Scholar]
  20. Kit S., Sheppard M., Ichimura H., Nusinoff-Lehrman S., Ellis M. N., Fyfe J. A., Otsuka H. Nucleotide sequence changes in thymidine kinase gene of herpes simplex virus type 2 clones from an isolate of a patient treated with acyclovir. Antimicrob Agents Chemother. 1987 Oct;31(10):1483–1490. doi: 10.1128/aac.31.10.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kost R. G., Hill E. L., Tigges M., Straus S. E. Brief report: recurrent acyclovir-resistant genital herpes in an immunocompetent patient. N Engl J Med. 1993 Dec 9;329(24):1777–1782. doi: 10.1056/NEJM199312093292405. [DOI] [PubMed] [Google Scholar]
  22. Martin J. L., Ellis M. N., Keller P. M., Biron K. K., Lehrman S. N., Barry D. W., Furman P. A. Plaque autoradiography assay for the detection and quantitation of thymidine kinase-deficient and thymidine kinase-altered mutants of herpes simplex virus in clinical isolates. Antimicrob Agents Chemother. 1985 Aug;28(2):181–187. doi: 10.1128/aac.28.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mori H., Shiraki K., Kato T., Hayakawa Y., Yamanishi K., Takahashi M. Molecular analysis of the thymidine kinase gene of thymidine kinase-deficient mutants of varicella-zoster virus. Intervirology. 1988;29(6):301–310. doi: 10.1159/000150060. [DOI] [PubMed] [Google Scholar]
  24. Nahmias A. J., Lee F. K., Beckman-Nahmias S. Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world. Scand J Infect Dis Suppl. 1990;69:19–36. [PubMed] [Google Scholar]
  25. O'Brien J. J., Campoli-Richards D. M. Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1989 Mar;37(3):233–309. doi: 10.2165/00003495-198937030-00002. [DOI] [PubMed] [Google Scholar]
  26. Okada Y., Streisinger G., Owen J. E., Newton J., Tsugita A., Inouye M. Molecular basis of a mutational hot spot in the lysozyme gene of bacteriophage T4. Nature. 1972 Apr 14;236(5346):338–341. doi: 10.1038/236338a0. [DOI] [PubMed] [Google Scholar]
  27. Palù G., Gerna G., Bevilacqua F., Marcello A. A point mutation in the thymidine kinase gene is responsible for acyclovir-resistance in herpes simplex virus type 2 sequential isolates. Virus Res. 1992 Sep 1;25(1-2):133–144. doi: 10.1016/0168-1702(92)90105-i. [DOI] [PubMed] [Google Scholar]
  28. Parker A. C., Craig J. I., Collins P., Oliver N., Smith I. Acyclovir-resistant herpes simplex virus infection due to altered DNA polymerase. Lancet. 1987 Dec 19;2(8573):1461–1461. doi: 10.1016/s0140-6736(87)91157-3. [DOI] [PubMed] [Google Scholar]
  29. Pribnow D., Sigurdson D. C., Gold L., Singer B. S., Napoli C., Brosius J., Dull T. J., Noller H. F. rII cistrons of bacteriophage T4. DNA sequence around the intercistronic divide and positions of genetic landmarks. J Mol Biol. 1981 Jul 5;149(3):337–376. doi: 10.1016/0022-2836(81)90477-0. [DOI] [PubMed] [Google Scholar]
  30. Rechtin T. M., Black M. E., Mao F., Lewis M. L., Drake R. R. Purification and photoaffinity labeling of herpes simplex virus type-1 thymidine kinase. J Biol Chem. 1995 Mar 31;270(13):7055–7060. doi: 10.1074/jbc.270.13.7055. [DOI] [PubMed] [Google Scholar]
  31. Sacks S. L., Fox R., Levendusky P., Stiver H. G., Roland S., Nusinoff-Lehrman S., Keeney R. Chronic suppression for six months compared with intermittent lesional therapy of recurrent genital herpes using oral acyclovir: effects on lesions and nonlesional prodromes. Sex Transm Dis. 1988 Jan-Mar;15(1):58–62. doi: 10.1097/00007435-198801000-00013. [DOI] [PubMed] [Google Scholar]
  32. Sacks S. L., Wanklin R. J., Reece D. E., Hicks K. A., Tyler K. L., Coen D. M. Progressive esophagitis from acyclovir-resistant herpes simplex. Clinical roles for DNA polymerase mutants and viral heterogeneity? Ann Intern Med. 1989 Dec 1;111(11):893–899. doi: 10.7326/0003-4819-111-11-893. [DOI] [PubMed] [Google Scholar]
  33. Safrin S., Crumpacker C., Chatis P., Davis R., Hafner R., Rush J., Kessler H. A., Landry B., Mills J. A controlled trial comparing foscarnet with vidarabine for acyclovir-resistant mucocutaneous herpes simplex in the acquired immunodeficiency syndrome. The AIDS Clinical Trials Group. N Engl J Med. 1991 Aug 22;325(8):551–555. doi: 10.1056/NEJM199108223250805. [DOI] [PubMed] [Google Scholar]
  34. Sasadeusz J. J., Sacks S. L. Spontaneous reactivation of thymidine kinase-deficient, acyclovir-resistant type-2 herpes simplex virus: masked heterogeneity or reversion? J Infect Dis. 1996 Sep;174(3):476–482. doi: 10.1093/infdis/174.3.476. [DOI] [PubMed] [Google Scholar]
  35. Shepp D. H., Newton B. A., Dandliker P. S., Flournoy N., Meyers J. D. Oral acyclovir therapy for mucocutaneous herpes simplex virus infections in immunocompromised marrow transplant recipients. Ann Intern Med. 1985 Jun;102(6):783–785. doi: 10.7326/0003-4819-102-6-783. [DOI] [PubMed] [Google Scholar]
  36. Siegal F. P., Lopez C., Hammer G. S., Brown A. E., Kornfeld S. J., Gold J., Hassett J., Hirschman S. Z., Cunningham-Rundles C., Adelsberg B. R. Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med. 1981 Dec 10;305(24):1439–1444. doi: 10.1056/NEJM198112103052403. [DOI] [PubMed] [Google Scholar]
  37. Streisinger G., Owen J. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics. 1985 Apr;109(4):633–659. doi: 10.1093/genetics/109.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Summers W. P., Wagner M., Summers W. C. Possible peptide chain termination mutants in thymide kinase gene of a mammalian virus, herpes simplex virus. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4081–4084. doi: 10.1073/pnas.72.10.4081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Talarico C. L., Phelps W. C., Biron K. K. Analysis of the thymidine kinase genes from acyclovir-resistant mutants of varicella-zoster virus isolated from patients with AIDS. J Virol. 1993 Feb;67(2):1024–1033. doi: 10.1128/jvi.67.2.1024-1033.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tanaka S., Toh Y., Mori R. Molecular analysis of a neurovirulent herpes simplex virus type 2 strain with reduced thymidine kinase activity. Arch Virol. 1993;131(1-2):61–73. doi: 10.1007/BF01379080. [DOI] [PubMed] [Google Scholar]
  41. Tenser R. B., Hay K. A., Edris W. A. Latency-associated transcript but not reactivatable virus is present in sensory ganglion neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. J Virol. 1989 Jun;63(6):2861–2865. doi: 10.1128/jvi.63.6.2861-2865.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wade J. C., McLaren C., Meyers J. D. Frequency and significance of acyclovir-resistant herpes simplex virus isolated from marrow transplant patients receiving multiple courses of treatment with acyclovir. J Infect Dis. 1983 Dec;148(6):1077–1082. doi: 10.1093/infdis/148.6.1077. [DOI] [PubMed] [Google Scholar]
  43. Wade J. C., Newton B., Flournoy N., Meyers J. D. Oral acyclovir for prevention of herpes simplex virus reactivation after marrow transplantation. Ann Intern Med. 1984 Jun;100(6):823–828. doi: 10.7326/0003-4819-100-6-823. [DOI] [PubMed] [Google Scholar]
  44. Whitley R. J., Levin M., Barton N., Hershey B. J., Davis G., Keeney R. E., Whelchel J., Diethelm A. G., Kartus P., Soong S. J. Infections caused by herpes simplex virus in the immunocompromised host: natural history and topical acyclovir therapy. J Infect Dis. 1984 Sep;150(3):323–329. doi: 10.1093/infdis/150.3.323. [DOI] [PubMed] [Google Scholar]
  45. Wilson J. B., Hayday A., Courtneidge S., Fried M. A frameshift at a mutational hotspot in the polyoma virus early region generates two new proteins that define T-antigen functional domains. Cell. 1986 Feb 14;44(3):477–487. doi: 10.1016/0092-8674(86)90469-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES