Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):4055–4061. doi: 10.1128/jvi.71.5.4055-4061.1997

Antigenic structure of the central conserved region of protein G of bovine respiratory syncytial virus.

J P Langedijk 1, R H Meloen 1, G Taylor 1, J M Furze 1, J T van Oirschot 1
PMCID: PMC191558  PMID: 9094683

Abstract

Epitopes were resolved at the amino acid level for nine monoclonal antibodies (MAbs) directed against the central conserved region of protein G of bovine respiratory syncytial virus (BRSV-G). Peptide binding studies showed which amino acids in the epitope contributed to antibody binding. The details of the epitopes were compared with the high-resolution structure of a synthetic peptide corresponding to the central conserved region of BRSV-G, and this indicated which face of the central conserved region is the antigenic structure. The major linear epitope of the central conserved region of BRSV-G is located at the tip of the loop, overlapping a relatively flat surface formed by a double disulfide-bonded cystine noose. At least one, but possibly two sulfur atoms of a disulfide bridge that line the conserved pocket at the center of the flat surface, is a major contributor to antibody binding. Some of the residue positions in the epitope have mutated during the evolution of RSV-G, which suggests that the virus escaped antibody recognition with these mutations. Mutations that occur at positions 177 and 180 may have only a local effect on the antigenic surface, without influencing the structure of the backbone, whereas mutations at positions 183 and 184 will probably have major structural consequences. The study explains the antigenic, structural, and functional importance of each residue in the cystine noose which provides information for peptide vaccine design. Additionally, analysis of the epitopes demonstrated that two point mutations at positions 180 and 205 define the preliminary classification of BRSV subgroups.

Full Text

The Full Text of this article is available as a PDF (620.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerlind-Stopner B., Utter G., Mufson M. A., Orvell C., Lerner R. A., Norrby E. A subgroup-specific antigenic site in the G protein of respiratory syncytial virus forms a disulfide-bonded loop. J Virol. 1990 Oct;64(10):5143–5148. doi: 10.1128/jvi.64.10.5143-5148.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doreleijers J. F., Langedijk J. P., Hård K., Boelens R., Rullmann J. A., Schaaper W. M., van Oirschot J. T., Kaptein R. Solution structure of the immunodominant region of protein G of bovine respiratory syncytial virus. Biochemistry. 1996 Nov 26;35(47):14684–14688. doi: 10.1021/bi9621627. [DOI] [PubMed] [Google Scholar]
  3. Furze J., Wertz G., Lerch R., Taylor G. Antigenic heterogeneity of the attachment protein of bovine respiratory syncytial virus. J Gen Virol. 1994 Feb;75(Pt 2):363–370. doi: 10.1099/0022-1317-75-2-363. [DOI] [PubMed] [Google Scholar]
  4. Garcia-Barreno B., Delgado T., Akerlind-Stopner B., Norrby E., Melero J. A. Location of the epitope recognized by monoclonal antibody 63G on the primary structure of human respiratory syncytial virus G glycoprotein and the ability of synthetic peptides containing this epitope to induce neutralizing antibodies. J Gen Virol. 1992 Oct;73(Pt 10):2625–2630. doi: 10.1099/0022-1317-73-10-2625. [DOI] [PubMed] [Google Scholar]
  5. García-Barreno B., Portela A., Delgado T., López J. A., Melero J. A. Frame shift mutations as a novel mechanism for the generation of neutralization resistant mutants of human respiratory syncytial virus. EMBO J. 1990 Dec;9(12):4181–4187. doi: 10.1002/j.1460-2075.1990.tb07642.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geysen H. M., Barteling S. J., Meloen R. H. Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc Natl Acad Sci U S A. 1985 Jan;82(1):178–182. doi: 10.1073/pnas.82.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson P. R., Spriggs M. K., Olmsted R. A., Collins P. L. The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive sequence divergence between antigenically related proteins. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5625–5629. doi: 10.1073/pnas.84.16.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones S., Thornton J. M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Langedijk J. P., Back N. K., Kinney-Thomas E., Bruck C., Francotte M., Goudsmit J., Meloen R. H. Comparison and fine mapping of both high and low neutralizing monoclonal antibodies against the principal neutralization domain of HIV-1. Arch Virol. 1992;126(1-4):129–146. doi: 10.1007/BF01309690. [DOI] [PubMed] [Google Scholar]
  11. Langedijk J. P., Middel W. G., Schaaper W. M., Meloen R. H., Kramps J. A., Brandenburg A. H., van Oirschot J. T. Type-specific serologic diagnosis of respiratory syncytial virus infection, based on a synthetic peptide of the attachment protein G. J Immunol Methods. 1996 Jun 21;193(2):157–166. doi: 10.1016/0022-1759(96)00039-7. [DOI] [PubMed] [Google Scholar]
  12. Langedijk J. P., Schaaper W. M., Meloen R. H., van Oirschot J. T. Proposed three-dimensional model for the attachment protein G of respiratory syncytial virus. J Gen Virol. 1996 Jun;77(Pt 6):1249–1257. doi: 10.1099/0022-1317-77-6-1249. [DOI] [PubMed] [Google Scholar]
  13. Lerch R. A., Anderson K., Wertz G. W. Nucleotide sequence analysis and expression from recombinant vectors demonstrate that the attachment protein G of bovine respiratory syncytial virus is distinct from that of human respiratory syncytial virus. J Virol. 1990 Nov;64(11):5559–5569. doi: 10.1128/jvi.64.11.5559-5569.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Norrby E., Mufson M. A., Alexander H., Houghten R. A., Lerner R. A. Site-directed serology with synthetic peptides representing the large glycoprotein G of respiratory syncytial virus. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6572–6576. doi: 10.1073/pnas.84.18.6572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  16. Rueda P., Delgado T., Portela A., Melero J. A., García-Barreno B. Premature stop codons in the G glycoprotein of human respiratory syncytial viruses resistant to neutralization by monoclonal antibodies. J Virol. 1991 Jun;65(6):3374–3378. doi: 10.1128/jvi.65.6.3374-3378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rueda P., García-Barreno B., Melero J. A. Loss of conserved cysteine residues in the attachment (G) glycoprotein of two human respiratory syncytial virus escape mutants that contain multiple A-G substitutions (hypermutations). Virology. 1994 Feb;198(2):653–662. doi: 10.1006/viro.1994.1077. [DOI] [PubMed] [Google Scholar]
  18. Schrijver R. S., Daus F., Kramps J. A., Langedijk J. P., Buijs R., Middel W. G., Taylor G., Furze J., Huyben M. W., van Oirschot J. T. Subgrouping of bovine respiratory syncytial virus strains detected in lung tissue. Vet Microbiol. 1996 Dec;53(3-4):253–260. doi: 10.1016/s0378-1135(96)01223-0. [DOI] [PubMed] [Google Scholar]
  19. Trudel M., Nadon F., Séguin C., Binz H. Protection of BALB/c mice from respiratory syncytial virus infection by immunization with a synthetic peptide derived from the G glycoprotein. Virology. 1991 Dec;185(2):749–757. doi: 10.1016/0042-6822(91)90546-n. [DOI] [PubMed] [Google Scholar]
  20. Wertz G. W., Collins P. L., Huang Y., Gruber C., Levine S., Ball L. A. Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4075–4079. doi: 10.1073/pnas.82.12.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES