Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 May;71(5):4071–4078. doi: 10.1128/jvi.71.5.4071-4078.1997

Potent inhibition of human immunodeficiency virus type 1 in primary T cells and alveolar macrophages by a combination anti-Rev strategy delivered in an adeno-associated virus vector.

R T Inouye 1, B Du 1, D Boldt-Houle 1, A Ferrante 1, I W Park 1, S M Hammer 1, L Duan 1, J E Groopman 1, R J Pomerantz 1, E F Terwilliger 1
PMCID: PMC191560  PMID: 9094685

Abstract

The rate of viral replication appears to play a pivotal role in human immunodeficiency virus type 1 (HIV-1) pathogenesis and disease progression as it outstrips the capacity of the immune system to respond. Important cellular sites for HIV-1 production include T lymphocytes and tissue macrophages. Antiviral strategies, including newer treatment modalities such as gene therapy of HIV-1-susceptible cell populations, must be capable of engendering durable inhibitory effects to HIV-1 replication in both of these primary cell types in order to be effective. Among the potential genetic targets for intervention in the HIV-1 life cycle, the Rev regulatory system, consisting of Rev and its binding site, the Rev-responsive element (RRE), stands out as particularly attractive. Rev is essential for maintaining the stability of the viral genomic RNA as well as viral mRNAs encoding key structural and regulatory proteins. Moreover, it exhibits favorable threshold kinetics, in that Rev concentrations must rise above a critical level to exert their effect. To disable Rev function, primary T cells or macrophages were transduced with anti-Rev single-chain immunoglobulin (SFv) or RRE decoy genes either singly or in combination by employing adeno-associated virus vectors and then challenged with HIV-1. By directing both a protein and a nucleic acid against the normal interaction between Rev and the RRE, this genetic antiviral strategy effectively inhibited infection by either clinical or laboratory virus isolates. These results provide a framework for novel interventions to reduce virus production in the infected host.

Full Text

The Full Text of this article is available as a PDF (387.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988 Sep 29;335(6189):395–396. doi: 10.1038/335395a0. [DOI] [PubMed] [Google Scholar]
  2. Bartel D. P., Zapp M. L., Green M. R., Szostak J. W. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell. 1991 Nov 1;67(3):529–536. doi: 10.1016/0092-8674(91)90527-6. [DOI] [PubMed] [Google Scholar]
  3. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee S., Johnson P. R., Wong K. K., Jr Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science. 1992 Nov 27;258(5087):1485–1488. doi: 10.1126/science.1359646. [DOI] [PubMed] [Google Scholar]
  5. Cullen B. R. Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev. 1992 Sep;56(3):375–394. doi: 10.1128/mr.56.3.375-394.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Du B., Wolf A., Lee S., Terwilliger E. Changes in the host range and growth potential of an HIV-1 clone are conferred by the vpu gene. Virology. 1993 Jul;195(1):260–264. doi: 10.1006/viro.1993.1370. [DOI] [PubMed] [Google Scholar]
  7. Du B., Wu P., Boldt-Houle D. M., Terwilliger E. F. Efficient transduction of human neurons with an adeno-associated virus vector. Gene Ther. 1996 Mar;3(3):254–261. [PubMed] [Google Scholar]
  8. Duan L., Bagasra O., Laughlin M. A., Oakes J. W., Pomerantz R. J. Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5075–5079. doi: 10.1073/pnas.91.11.5075. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  9. Duan L., Zhang H., Oakes J. W., Bagasra O., Pomerantz R. J. Molecular and virological effects of intracellular anti-Rev single-chain variable fragments on the expression of various human immunodeficiency virus-1 strains. Hum Gene Ther. 1994 Nov;5(11):1315–1324. doi: 10.1089/hum.1994.5.11-1315. [DOI] [PubMed] [Google Scholar]
  10. Duan L., Zhu M., Bagasra O., Pomerantz R. J. Intracellular immunization against HIV-1 infection of human T lymphocytes: utility of anti-rev single-chain variable fragments. Hum Gene Ther. 1995 Dec;6(12):1561–1573. doi: 10.1089/hum.1995.6.12-1561. [DOI] [PubMed] [Google Scholar]
  11. Fischer U., Huber J., Boelens W. C., Mattaj I. W., Lührmann R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell. 1995 Aug 11;82(3):475–483. doi: 10.1016/0092-8674(95)90436-0. [DOI] [PubMed] [Google Scholar]
  12. Flotte T. R., Afione S. A., Conrad C., McGrath S. A., Solow R., Oka H., Zeitlin P. L., Guggino W. B., Carter B. J. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10613–10617. doi: 10.1073/pnas.90.22.10613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giver L., Bartel D., Zapp M., Pawul A., Green M., Ellington A. D. Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res. 1993 Nov 25;21(23):5509–5516. doi: 10.1093/nar/21.23.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodman S., Xiao X., Donahue R. E., Moulton A., Miller J., Walsh C., Young N. S., Samulski R. J., Nienhuis A. W. Recombinant adeno-associated virus-mediated gene transfer into hematopoietic progenitor cells. Blood. 1994 Sep 1;84(5):1492–1500. [PubMed] [Google Scholar]
  15. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  16. Halbert C. L., Alexander I. E., Wolgamot G. M., Miller A. D. Adeno-associated virus vectors transduce primary cells much less efficiently than immortalized cells. J Virol. 1995 Mar;69(3):1473–1479. doi: 10.1128/jvi.69.3.1473-1479.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heim R., Prasher D. C., Tsien R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501–12504. doi: 10.1073/pnas.91.26.12501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoffman M. A., Palmenberg A. C. Mutational analysis of the J-K stem-loop region of the encephalomyocarditis virus IRES. J Virol. 1995 Jul;69(7):4399–4406. doi: 10.1128/jvi.69.7.4399-4406.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jolly D. Viral vector systems for gene therapy. Cancer Gene Ther. 1994 Mar;1(1):51–64. [PubMed] [Google Scholar]
  20. Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O'Malley K. L., During M. J. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994 Oct;8(2):148–154. doi: 10.1038/ng1094-148. [DOI] [PubMed] [Google Scholar]
  21. Koenig S., Gendelman H. E., Orenstein J. M., Dal Canto M. C., Pezeshkpour G. H., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986 Sep 5;233(4768):1089–1093. doi: 10.1126/science.3016903. [DOI] [PubMed] [Google Scholar]
  22. Kubota S., Duan L., Furuta R. A., Hatanaka M., Pomerantz R. J. Nuclear preservation and cytoplasmic degradation of human immunodeficiency virus type 1 Rev protein. J Virol. 1996 Feb;70(2):1282–1287. doi: 10.1128/jvi.70.2.1282-1287.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLeod G. X., McGrath J. M., Ladd E. A., Hammer S. M. Didanosine and zidovudine resistance patterns in clinical isolates of human immunodeficiency virus type 1 as determined by a replication endpoint concentration assay. Antimicrob Agents Chemother. 1992 May;36(5):920–925. doi: 10.1128/aac.36.5.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller J. L., Donahue R. E., Sellers S. E., Samulski R. J., Young N. S., Nienhuis A. W. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10183–10187. doi: 10.1073/pnas.91.21.10183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Muro-Cacho C. A., Samulski R. J., Kaplan D. Gene transfer in human lymphocytes using a vector based on adeno-associated virus. J Immunother (1991) 1992 May;11(4):231–237. doi: 10.1097/00002371-199205000-00001. [DOI] [PubMed] [Google Scholar]
  26. Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol. 1992;158:97–129. doi: 10.1007/978-3-642-75608-5_5. [DOI] [PubMed] [Google Scholar]
  27. Naldini L., Blömer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996 Apr 12;272(5259):263–267. doi: 10.1126/science.272.5259.263. [DOI] [PubMed] [Google Scholar]
  28. Pinkston P., Pelletier N., Arena C., Schock J., Garland R., Rose R. M. Quantitative culture of HIV-1 from bronchoalveolar lavage cells. Am J Respir Crit Care Med. 1995 Jul;152(1):254–259. doi: 10.1164/ajrccm.152.1.7599832. [DOI] [PubMed] [Google Scholar]
  29. Pomerantz R. J., Seshamma T., Trono D. Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. J Virol. 1992 Mar;66(3):1809–1813. doi: 10.1128/jvi.66.3.1809-1813.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pomerantz R. J., Trono D., Feinberg M. B., Baltimore D. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell. 1990 Jun 29;61(7):1271–1276. doi: 10.1016/0092-8674(90)90691-7. [DOI] [PubMed] [Google Scholar]
  31. Pritchard C. E., Grasby J. A., Hamy F., Zacharek A. M., Singh M., Karn J., Gait M. J. Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins. Nucleic Acids Res. 1994 Jul 11;22(13):2592–2600. doi: 10.1093/nar/22.13.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rosen C. A. HIV regulatory proteins: potential targets for therapeutic intervention. AIDS Res Hum Retroviruses. 1992 Feb;8(2):175–181. doi: 10.1089/aid.1992.8.175. [DOI] [PubMed] [Google Scholar]
  33. Samulski R. J., Chang L. S., Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol. 1987 Oct;61(10):3096–3101. doi: 10.1128/jvi.61.10.3096-3101.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Samulski R. J., Chang L. S., Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. 1989 Sep;63(9):3822–3828. doi: 10.1128/jvi.63.9.3822-3828.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Samulski R. J., Zhu X., Xiao X., Brook J. D., Housman D. E., Epstein N., Hunter L. A. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 1991 Dec;10(12):3941–3950. doi: 10.1002/j.1460-2075.1991.tb04964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vella S. Clinical experience with saquinavir. AIDS. 1995 Dec;9 (Suppl 2):S21–S25. [PubMed] [Google Scholar]
  37. Woffendin C., Yang Z. Y., Udaykumar, Xu L., Yang N. S., Sheehy M. J., Nabel G. J. Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11581–11585. doi: 10.1073/pnas.91.24.11581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu Y., Duan L., Zhu M., Hu B., Kubota S., Bagasra O., Pomerantz R. J. Binding of intracellular anti-Rev single chain variable fragments to different epitopes of human immunodeficiency virus type 1 rev: variations in viral inhibition. J Virol. 1996 May;70(5):3290–3297. doi: 10.1128/jvi.70.5.3290-3297.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES