Abstract
A retroviral packaging transcription unit was constructed in which the Moloney murine leukemia virus (MoMLV) gag-pol and env genes are expressed under the control of herpesvirus regulatory sequences. This transcription unit, lacking long terminal repeats, primer binding sites, and most of the retrovirus packaging signal but retaining both retroviral donor and acceptor splice sites, was cloned into a herpes simplex virus type 1 (HSV-1) amplicon plasmid, and amplicon vectors (the gag-pol-env [GPE] vectors) were generated by using a defective HSV-1 vector as helper virus. The GPE vector population was used to infect human TE671 cells (ATCC CRL 8805), harboring a lacZ provirus (TE-lac2 cells), and supernatants of infected cells were collected and filtered at different times after infection. These supernatants were found to contain infectious ecotropic lacZ retroviral particles, as shown both by reverse transcription-PCR and by their ability to transduce a beta-galactosidase activity to murine NIH 3T3 cells but not to human TE671 cells. The titer of retroviral vectors released by GPE vector-infected TE-lac2 cells increased with the dose of infectious amplicon particles. Retrovirus vector production was inhibited by superinfection with helper virus, indicating that helper virus coinfection negatively interfered with retrovirus production. Induction of retrovirus vectors by GPE vectors was neutralized by anti-HSV-1 but not by anti-MoMLV antiserum, while transduction of beta-galactosidase activity to NIH 3T3 cells by supernatants of GPE vector-infected TE-lac2 cells was neutralized by anti-MoMLV antiserum. These results demonstrate that HSV-1 GPE amplicon vectors can rescue defective lacZ retrovirus vectors and suggest that they could be used as a sort of launching ramp to fire defective retrovirus vectors from within virtually any in vitro or in vivo cell type containing defective retroviral vectors.
Full Text
The Full Text of this article is available as a PDF (269.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergold P. J., Casaccia-Bonnefil P., Zeng X. L., Federoff H. J. Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6165–6169. doi: 10.1073/pnas.90.13.6165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berthomme H., Fournel S., Epstein A. L. Increased transcomplementation properties of plasmids carrying HSV-1 origin of replication and packaging signals. Virology. 1996 Feb 15;216(2):437–443. doi: 10.1006/viro.1996.0081. [DOI] [PubMed] [Google Scholar]
- Berthomme H., Monahan S. J., Parris D. S., Jacquemont B., Epstein A. L. Cloning, sequencing, and functional characterization of the two subunits of the pseudorabies virus DNA polymerase holoenzyme: evidence for specificity of interaction. J Virol. 1995 May;69(5):2811–2818. doi: 10.1128/jvi.69.5.2811-2818.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns J. C., Friedmann T., Driever W., Burrascano M., Yee J. K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8033–8037. doi: 10.1073/pnas.90.17.8033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colbere-Garapin F., Chousterman S., Horodniceanu F., Kourilsky P., Garapin A. C. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3755–3759. doi: 10.1073/pnas.76.8.3755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6460–6464. doi: 10.1073/pnas.85.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson I., Stow N. D. Expression of an immediate early polypeptide and activation of a viral origin of DNA replication in cells containing a fragment of herpes simplex virus DNA. Virology. 1985 Feb;141(1):77–88. doi: 10.1016/0042-6822(85)90184-9. [DOI] [PubMed] [Google Scholar]
- Dong J., Hunter E. Analysis of retroviral assembly using a vaccinia/T7-polymerase complementation system. Virology. 1993 May;194(1):192–199. doi: 10.1006/viro.1993.1249. [DOI] [PubMed] [Google Scholar]
- Everett R. D. Trans activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J. 1984 Dec 20;3(13):3135–3141. doi: 10.1002/j.1460-2075.1984.tb02270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Ferry N., Duplessis O., Houssin D., Danos O., Heard J. M. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8377–8381. doi: 10.1073/pnas.88.19.8377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flamant F., Demeneix B., Benoist C., Markossian-Belin S., Samarut J. Virofection: a new procedure to achieve stable expression of genes transferred into early embryos. Int J Dev Biol. 1994 Dec;38(4):751–757. [PubMed] [Google Scholar]
- Fraefel C., Song S., Lim F., Lang P., Yu L., Wang Y., Wild P., Geller A. I. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol. 1996 Oct;70(10):7190–7197. doi: 10.1128/jvi.70.10.7190-7197.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garnier L., Ravallec M., Blanchard P., Chaabihi H., Bossy J. P., Devauchelle G., Jestin A., Cerutti M. Incorporation of pseudorabies virus gD into human immunodeficiency virus type 1 Gag particles produced in baculovirus-infected cells. J Virol. 1995 Jul;69(7):4060–4068. doi: 10.1128/jvi.69.7.4060-4068.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geller A. I., Keyomarsi K., Bryan J., Pardee A. B. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8950–8954. doi: 10.1073/pnas.87.22.8950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy W. R., Sandri-Goldin R. M. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol. 1994 Dec;68(12):7790–7799. doi: 10.1128/jvi.68.12.7790-7799.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong Z., Ferrari E., Wright-Minogue J., Chase R., Risano C., Seelig G., Lee C. G., Kwong A. D. Enzymatic characterization of hepatitis C virus NS3/4A complexes expressed in mammalian cells by using the herpes simplex virus amplicon system. J Virol. 1996 Jul;70(7):4261–4268. doi: 10.1128/jvi.70.7.4261-4268.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isfort R. J., Qian Z., Jones D., Silva R. F., Witter R., Kung H. J. Integration of multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a common target of integration. Virology. 1994 Aug 15;203(1):125–133. doi: 10.1006/viro.1994.1462. [DOI] [PubMed] [Google Scholar]
- Isfort R., Jones D., Kost R., Witter R., Kung H. J. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):991–995. doi: 10.1073/pnas.89.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwong A. D., Frenkel N. Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1926–1930. doi: 10.1073/pnas.84.7.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landau N. R., Littman D. R. Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J Virol. 1992 Aug;66(8):5110–5113. doi: 10.1128/jvi.66.8.5110-5113.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leib D. A., Olivo P. D. Gene delivery to neurons: is herpes simplex virus the right tool for the job? Bioessays. 1993 Aug;15(8):547–554. doi: 10.1002/bies.950150808. [DOI] [PubMed] [Google Scholar]
- Lowenstein P. R., Fournel S., Bain D., Tomasec P., Clissold P., Castro M. G., Epstein A. L. Herpes simplex virus 1 (HSV-1) helper co-infection affects the distribution of an amplicon encoded protein in glia. Neuroreport. 1994 Aug 15;5(13):1625–1630. doi: 10.1097/00001756-199408150-00021. [DOI] [PubMed] [Google Scholar]
- McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 1988 Jul;69(Pt 7):1531–1574. doi: 10.1099/0022-1317-69-7-1531. [DOI] [PubMed] [Google Scholar]
- Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. D. Retrovirus packaging cells. Hum Gene Ther. 1990 Spring;1(1):5–14. doi: 10.1089/hum.1990.1.1-5. [DOI] [PubMed] [Google Scholar]
- Noguiez-Hellin P., Meur M. R., Salzmann J. L., Klatzmann D. Plasmoviruses: nonviral/viral vectors for gene therapy. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4175–4180. doi: 10.1073/pnas.93.9.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker B. A., Stark G. R. Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. J Virol. 1979 Aug;31(2):360–369. doi: 10.1128/jvi.31.2.360-369.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson T., Everett R. D. A prominent serine-rich region in Vmw175, the major transcriptional regulator protein of herpes simplex virus type 1, is not essential for virus growth in tissue culture. J Gen Virol. 1990 Aug;71(Pt 8):1775–1783. doi: 10.1099/0022-1317-71-8-1775. [DOI] [PubMed] [Google Scholar]
- Porter D. C., Melsen L. R., Compans R. W., Morrow C. D. Release of virus-like particles from cells infected with poliovirus replicons which express human immunodeficiency virus type 1 Gag. J Virol. 1996 Apr;70(4):2643–2649. doi: 10.1128/jvi.70.4.2643-2649.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanes J. R., Rubenstein J. L., Nicolas J. F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 1986 Dec 1;5(12):3133–3142. doi: 10.1002/j.1460-2075.1986.tb04620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinnick T. M., Lerner R. A., Sutcliffe J. G. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981 Oct 15;293(5833):543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
- Sommerfelt M. A., Weiss R. A. Receptor interference groups of 20 retroviruses plating on human cells. Virology. 1990 May;176(1):58–69. doi: 10.1016/0042-6822(90)90230-o. [DOI] [PubMed] [Google Scholar]
- Soneoka Y., Cannon P. M., Ramsdale E. E., Griffiths J. C., Romano G., Kingsman S. M., Kingsman A. J. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 1995 Feb 25;23(4):628–633. doi: 10.1093/nar/23.4.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaete R. R., Frenkel N. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell. 1982 Aug;30(1):295–304. doi: 10.1016/0092-8674(82)90035-6. [DOI] [PubMed] [Google Scholar]
- Takahara Y., Hamada K., Housman D. E. A new retrovirus packaging cell for gene transfer constructed from amplified long terminal repeat-free chimeric proviral genes. J Virol. 1992 Jun;66(6):3725–3732. doi: 10.1128/jvi.66.6.3725-3732.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi Y., Cosset F. L., Lachmann P. J., Okada H., Weiss R. A., Collins M. K. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol. 1994 Dec;68(12):8001–8007. doi: 10.1128/jvi.68.12.8001-8007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yee J. K., Friedmann T., Burns J. C. Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol. 1994;43(Pt A):99–112. doi: 10.1016/s0091-679x(08)60600-7. [DOI] [PubMed] [Google Scholar]