Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Oct;119(3):511–518. doi: 10.1111/j.1476-5381.1996.tb15701.x

The mechanism of cardioprotection by S-nitrosoglutathione monoethyl ester in rat isolated heart during cardioplegic ischaemic arrest.

E A Konorev 1, J Joseph 1, M M Tarpey 1, B Kalyanaraman 1
PMCID: PMC1915698  PMID: 8894171

Abstract

1. This study was designed (i) to assess the effect of S-nitrosoglutathione monoethyl ester (GSNO-MEE), a membrane-permeable analogue of S-nitrosoglutathione (GSNO), on rat isolated heart during cardioplegic ischaemia, and (ii) to monitor the release of nitric oxide (.NO) from GSNO-MEE in intact hearts using endogenous myoglobin as an intracellular .NO trap and the hydrophilic N-methyl glucamine dithiocarbamate-iron (MGD-Fe2+) complex as an extracellular .NO trap. 2. During aerobic perfusion of rat isolated heart with GSNO-MEE (20 mumol 1(-1), there was an increase in cyclic GMP from 105 +/- 11 to 955 +/- 193 pmol g-1 dry wt. (P < 0.05), and a decrease in glycogen content from 119 +/- 3 to 96 +/- 2 mumol g-1 dry wt. (P < 0.05), and glucose-6-phosphate concentration from 258 +/- 22 in control to 185 +/- 17 nmol g-1 dry wt. (P < 0.05). During induction of cardioplegia, GSNO-MEE caused the accumulation of cyclic GMP (100 +/- 6 in control vs. 929 +/- 168 pmol g-1 dry wt. in GSNO-MEE-treated group, P < 0.05), and depletion of glycogen from 117 +/- 3 to 103 +/- 2 mumol g-1 dry wt. (P < 0.05) in myocardial tissue. 3. Inclusion of GSNO-MEE (20 mumol l-1) in the cardioplegic solution improved the recovery of developed pressure (46 +/- 8 vs. 71 +/- 3% of baseline, P < 0.05), and rate-pressure product from 34 +/- 6 to 63 +/- 5% of baseline (P < 0.05), and reduced the diastolic pressure during reperfusion from 61 +/- 7 in control to 35 +/- 5 mmHg (P < 0.05) after 35 min ischaemic arrest. GSH-MEE (20 mumol l-1) in the cardioplegic solution did not elicit the protective effect. 4. During cardioplegic ischaemia, GSNO-MEE (20-200 mumol l-1) induced the formation of nitrosylmyoglobin (MbNO), which was detected by electron spin resonance (ESR) spectroscopy. Inclusion of MGD-Fe2+ (50 mumol l-1 Fe2+ and 500 mumol l-1 MGD) in the cardioplegic solution along with GSNO-MEE yielded an ESR signal characteristic of the MGD-Fe2+ -NO adduct. However, the MGD-Fe2+ trap did not prevent the formation of the intracellular MbNO complex in myocardial tissue. During aerobic reperfusion, denitrosylation of the MbNO complex slowly occurred as shown by the decrease in ESR spectral intensity. GSNO-MEE treatment did not affect ubisemiquinone radical formation during reperfusion. 5. GSNO-MEE (20 microliters l-1) treatment elevated the myocardial cyclic GMP during ischaemia (47 +/- 3 in control vs. 153 +/- 34 pmol g-1 dry wt. after 35 min ischaemia, P < 0.05). The cyclic GMP levels decreased in the control group during ischaemia from 100 +/- 6 after induction of cardioplegia to 47 +/- 3 pmol g-1 dry wt. at the end of ischaemic duration. 6. Glycogen levels were lower in GSNO-MEE (20 mumol l-1)-treated hearts throughout the ischaemic duration (26.7 +/- 3.1 in control vs. 19.7 +/- 2.4 mumol g dry-t wt. in GSNO-MEE-treated group at the end of ischaemic duration), because of rapid depletion of glycogen during induction of cardioplegia. During ischaemia, the amounts of glycogen consumed in both groups were similar. Equivalent amounts of lactate were produced in both groups (148 +/- 4 in control vs. 141 +/- 4 mumol g-1 dry wt. in GSNO-MEE-treated group after 35 min in ischaemia). 7. The mechanism(s) of myocardial protection by GSNO-MEE against ischaemic injury may involve preischaemic glycogen reduction and/or elevated cyclic GMP levels in myocardial tissue during ischaemia.

Full text

PDF
511

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlner J., Andersson R. G., Torfgård K., Axelsson K. L. Organic nitrate esters: clinical use and mechanisms of actions. Pharmacol Rev. 1991 Sep;43(3):351–423. [PubMed] [Google Scholar]
  2. Anderson M. E., Naganuma A., Meister A. Protection against cisplatin toxicity by administration of glutathione ester. FASEB J. 1990 Nov;4(14):3251–3255. doi: 10.1096/fasebj.4.14.2227215. [DOI] [PubMed] [Google Scholar]
  3. Astor M. B., Anderson M. E., Meister A. Relationship between intracellular GSH levels and hypoxic cell radiosensitivity. Pharmacol Ther. 1988;39(1-3):115–121. doi: 10.1016/0163-7258(88)90049-6. [DOI] [PubMed] [Google Scholar]
  4. Baker J. E., Felix C. C., Olinger G. N., Kalyanaraman B. Myocardial ischemia and reperfusion: direct evidence for free radical generation by electron spin resonance spectroscopy. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2786–2789. doi: 10.1073/pnas.85.8.2786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bartel S., Karczewski P., Krause E. G. Protein phosphorylation and cardiac function: cholinergic-adrenergic interaction. Cardiovasc Res. 1993 Nov;27(11):1948–1953. doi: 10.1093/cvr/27.11.1948. [DOI] [PubMed] [Google Scholar]
  7. Beitner R., Haberman S., Cycowitz T. The effect of cyclic GMP on phosphofructokinase from rat tissues. Biochim Biophys Acta. 1977 Jun 10;482(2):330–340. doi: 10.1016/0005-2744(77)90246-7. [DOI] [PubMed] [Google Scholar]
  8. Campbell E. B., Griffith O. W. Glutathione monoethyl ester: high-performance liquid chromatographic analysis and direct preparation of the free base form. Anal Biochem. 1989 Nov 15;183(1):21–25. doi: 10.1016/0003-2697(89)90165-6. [DOI] [PubMed] [Google Scholar]
  9. Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
  10. De Meyer G. R., Bult H., Ustünes L., Kockx M. M., Feelisch M., Herman A. G. Effect of nitric oxide donors on neointima formation and vascular reactivity in the collared carotid artery of rabbits. J Cardiovasc Pharmacol. 1995 Aug;26(2):272–279. doi: 10.1097/00005344-199508000-00013. [DOI] [PubMed] [Google Scholar]
  11. Depré C., Hue L. Cyclic GMP in the perfused rat heart. Effect of ischaemia, anoxia and nitric oxide synthase inhibitor. FEBS Lett. 1994 May 30;345(2-3):241–245. doi: 10.1016/0014-5793(94)00459-5. [DOI] [PubMed] [Google Scholar]
  12. Doeller J. E., Wittenberg B. A. Myoglobin function and energy metabolism of isolated cardiac myocytes: effect of sodium nitrite. Am J Physiol. 1991 Jul;261(1 Pt 2):H53–H62. doi: 10.1152/ajpheart.1991.261.1.H53. [DOI] [PubMed] [Google Scholar]
  13. Feelisch M., Noack E. A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol. 1987 Jul 2;139(1):19–30. doi: 10.1016/0014-2999(87)90493-6. [DOI] [PubMed] [Google Scholar]
  14. Gaboury J., Woodman R. C., Granger D. N., Reinhardt P., Kubes P. Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol. 1993 Sep;265(3 Pt 2):H862–H867. doi: 10.1152/ajpheart.1993.265.3.H862. [DOI] [PubMed] [Google Scholar]
  15. Gevers W. Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol. 1977 Nov;9(11):867–874. doi: 10.1016/s0022-2828(77)80008-4. [DOI] [PubMed] [Google Scholar]
  16. Groves P. H., Banning A. P., Penny W. J., Newby A. C., Cheadle H. A., Lewis M. J. The effects of exogenous nitric oxide on smooth muscle cell proliferation following porcine carotid angioplasty. Cardiovasc Res. 1995 Jul;30(1):87–96. [PubMed] [Google Scholar]
  17. Hare J. M., Keaney J. F., Jr, Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995 Jan;95(1):360–366. doi: 10.1172/JCI117664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartman J. C., Kurc G. M., Hullinger T. G., Wall T. M., Sheehy R. M., Shebuski R. J. Inhibition of nitric oxide synthase prevents myocardial protection by ramiprilat. J Pharmacol Exp Ther. 1994 Sep;270(3):1071–1076. [PubMed] [Google Scholar]
  19. Hartzell H. C., Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature. 1986 Sep 18;323(6085):273–275. doi: 10.1038/323273a0. [DOI] [PubMed] [Google Scholar]
  20. Hasebe N., Shen Y. T., Vatner S. F. Inhibition of endothelium-derived relaxing factor enhances myocardial stunning in conscious dogs. Circulation. 1993 Dec;88(6):2862–2871. doi: 10.1161/01.cir.88.6.2862. [DOI] [PubMed] [Google Scholar]
  21. Konorev E. A., Joseph J., Kalyanaraman B. S-nitrosoglutathione induces formation of nitrosylmyoglobin in isolated hearts during cardioplegic ischemia--an electron spin resonance study. FEBS Lett. 1996 Jan 8;378(2):111–114. doi: 10.1016/0014-5793(95)01429-2. [DOI] [PubMed] [Google Scholar]
  22. Konorev E. A., Tarpey M. M., Joseph J., Baker J. E., Kalyanaraman B. Nitronyl nitroxides as probes to study the mechanism of vasodilatory action of nitrovasodilators, nitrone spin traps, and nitroxides: role of nitric oxide. Free Radic Biol Med. 1995 Feb;18(2):169–177. doi: 10.1016/0891-5849(94)00112-w. [DOI] [PubMed] [Google Scholar]
  23. Konorev E. A., Tarpey M. M., Joseph J., Baker J. E., Kalyanaraman B. S-nitrosoglutathione improves functional recovery in the isolated rat heart after cardioplegic ischemic arrest-evidence for a cardioprotective effect of nitric oxide. J Pharmacol Exp Ther. 1995 Jul;274(1):200–206. [PubMed] [Google Scholar]
  24. Kupriyanov V. V., Lakomkin V. L., Steinschneider AYa, Severina MYu, Kapelko V. I., Ruuge E. K., Saks V. A. Relationships between pre-ischemic ATP and glycogen content and post-ischemic recovery of rat heart. J Mol Cell Cardiol. 1988 Dec;20(12):1151–1162. doi: 10.1016/0022-2828(88)90595-0. [DOI] [PubMed] [Google Scholar]
  25. Kurose I., Kubes P., Wolf R., Anderson D. C., Paulson J., Miyasaka M., Granger D. N. Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. Circ Res. 1993 Jul;73(1):164–171. doi: 10.1161/01.res.73.1.164. [DOI] [PubMed] [Google Scholar]
  26. Laustiola K., Vuorinen P., Karp M., Vapaatalo H., Metsä-Ketelä T. 8-Bromo cyclic GMP inhibits NADH and lactate accumulation in hypoxic rat atria. Naunyn Schmiedebergs Arch Pharmacol. 1983 Aug;323(4):361–363. doi: 10.1007/BF00512477. [DOI] [PubMed] [Google Scholar]
  27. Ljusegren M. E., Axelsson K. L. Lactate accumulation in isolated hypoxic rat ventricular myocardium: effect of different modulators of the cyclic GMP system. Pharmacol Toxicol. 1993 Jan;72(1):56–60. doi: 10.1111/j.1600-0773.1993.tb01339.x. [DOI] [PubMed] [Google Scholar]
  28. Malyshev IYu, Manukhina E. B., Mikoyan V. D., Kubrina L. N., Vanin A. F. Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett. 1995 Aug 21;370(3):159–162. doi: 10.1016/0014-5793(95)00801-f. [DOI] [PubMed] [Google Scholar]
  29. Matheis G., Sherman M. P., Buckberg G. D., Haybron D. M., Young H. H., Ignarro L. J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992 Feb;262(2 Pt 2):H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
  30. Mathews W. R., Kerr S. W. Biological activity of S-nitrosothiols: the role of nitric oxide. J Pharmacol Exp Ther. 1993 Dec;267(3):1529–1537. [PubMed] [Google Scholar]
  31. Mårtensson J., Meister A. Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci U S A. 1989 Jan;86(2):471–475. doi: 10.1073/pnas.86.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Méry P. F., Lohmann S. M., Walter U., Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1197–1201. doi: 10.1073/pnas.88.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Neely J. R., Grotyohann L. W. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res. 1984 Dec;55(6):816–824. doi: 10.1161/01.res.55.6.816. [DOI] [PubMed] [Google Scholar]
  34. Park J. W., Billman G. E., Means G. E. Transnitrosation as a predominant mechanism in the hypotensive effect of S-nitrosoglutathione. Biochem Mol Biol Int. 1993 Aug;30(5):885–891. [PubMed] [Google Scholar]
  35. Pinsky D. J., Oz M. C., Koga S., Taha Z., Broekman M. J., Marcus A. J., Liao H., Naka Y., Brett J., Cannon P. J. Cardiac preservation is enhanced in a heterotopic rat transplant model by supplementing the nitric oxide pathway. J Clin Invest. 1994 May;93(5):2291–2297. doi: 10.1172/JCI117230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Richard V., Blanc T., Kaeffer N., Tron C., Thuillez C. Myocardial and coronary endothelial protective effects of acetylcholine after myocardial ischaemia and reperfusion in rats: role of nitric oxide. Br J Pharmacol. 1995 Aug;115(8):1532–1538. doi: 10.1111/j.1476-5381.1995.tb16647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sabine B., Willenbrock R., Haase H., Karczewski P., Wallukat G., Dietz R., Krause E. G. Cyclic GMP-mediated phospholamban phosphorylation in intact cardiomyocytes. Biochem Biophys Res Commun. 1995 Sep 5;214(1):75–80. doi: 10.1006/bbrc.1995.2258. [DOI] [PubMed] [Google Scholar]
  38. Schulz R., Nava E., Moncada S. Induction and potential biological relevance of a Ca(2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol. 1992 Mar;105(3):575–580. doi: 10.1111/j.1476-5381.1992.tb09021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schweizer M., Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun. 1994 Oct 14;204(1):169–175. doi: 10.1006/bbrc.1994.2441. [DOI] [PubMed] [Google Scholar]
  40. Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994 May;74(5):970–978. doi: 10.1161/01.res.74.5.970. [DOI] [PubMed] [Google Scholar]
  41. Shinobu L. A., Jones S. G., Jones M. M. Sodium N-methyl-D-glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol Toxicol (Copenh) 1984 Mar;54(3):189–194. doi: 10.1111/j.1600-0773.1984.tb01916.x. [DOI] [PubMed] [Google Scholar]
  42. Siegfried M. R., Erhardt J., Rider T., Ma X. L., Lefer A. M. Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol Exp Ther. 1992 Feb;260(2):668–675. [PubMed] [Google Scholar]
  43. Tohse N., Sperelakis N. cGMP inhibits the activity of single calcium channels in embryonic chick heart cells. Circ Res. 1991 Aug;69(2):325–331. doi: 10.1161/01.res.69.2.325. [DOI] [PubMed] [Google Scholar]
  44. Vandebroeck A., Uyttenhove K., Bollen M., Stalmans W. The hepatic glycogenolysis induced by reversible ischaemia or KCN is exclusively catalysed by phosphorylase a. Biochem J. 1988 Dec 1;256(2):685–688. doi: 10.1042/bj2560685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vegh A., Szekeres L., Parratt J. Preconditioning of the ischaemic myocardium; involvement of the L-arginine nitric oxide pathway. Br J Pharmacol. 1992 Nov;107(3):648–652. doi: 10.1111/j.1476-5381.1992.tb14501.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wahler G. M., Dollinger S. J. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol. 1995 Jan;268(1 Pt 1):C45–C54. doi: 10.1152/ajpcell.1995.268.1.C45. [DOI] [PubMed] [Google Scholar]
  47. White R. L., Wittenberg B. A. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply. Biophys J. 1993 Jul;65(1):196–204. doi: 10.1016/S0006-3495(93)81058-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Williams M. W., Taft C. S., Ramnauth S., Zhao Z. Q., Vinten-Johansen J. Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Res. 1995 Jul;30(1):79–86. [PubMed] [Google Scholar]
  49. Wolfe C. L., Sievers R. E., Visseren F. L., Donnelly T. J. Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation. 1993 Mar;87(3):881–892. doi: 10.1161/01.cir.87.3.881. [DOI] [PubMed] [Google Scholar]
  50. Woolfson R. G., Patel V. C., Neild G. H., Yellon D. M. Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation. 1995 Mar 1;91(5):1545–1551. doi: 10.1161/01.cir.91.5.1545. [DOI] [PubMed] [Google Scholar]
  51. Yang W., Ando J., Korenaga R., Toyo-oka T., Kamiya A. Exogenous nitric oxide inhibits proliferation of cultured vascular endothelial cells. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1160–1167. doi: 10.1006/bbrc.1994.2304. [DOI] [PubMed] [Google Scholar]
  52. Yao S. K., Akhtar S., Scott-Burden T., Ober J. C., Golino P., Buja L. M., Casscells W., Willerson J. T. Endogenous and exogenous nitric oxide protect against intracoronary thrombosis and reocclusion after thrombolysis. Circulation. 1995 Aug 15;92(4):1005–1010. doi: 10.1161/01.cir.92.4.1005. [DOI] [PubMed] [Google Scholar]
  53. Zhu P., Zaugg C. E., Simper D., Hornstein P., Allegrini P. R., Buser P. T. Bradykinin improves postischaemic recovery in the rat heart: role of high energy phosphates, nitric oxide, and prostacyclin. Cardiovasc Res. 1995 May;29(5):658–663. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES