Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Oct;119(3):471–478. doi: 10.1111/j.1476-5381.1996.tb15696.x

Effects of cyclic GMP elevation on isoprenaline-induced increase in cyclic AMP and relaxation in rat aortic smooth muscle: role of phosphodiesterase 3.

E Delpy 1, H Coste 1, A C Gouville 1
PMCID: PMC1915707  PMID: 8894166

Abstract

1. In rat aortic rings precontracted with phenylephrine, the beta-adrenoceptor agonist isoprenaline (10 nM to 30 microM) produces greater relaxant effects in preparations with endothelium than in endothelium-denuded preparations. The aim of this study was to determine the mechanisms involved in this effect and in particular investigate the possibility of a synergistic action between adenosine 3':5'-cyclic monophosphate (cyclic AMP) and guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Isoprenaline-induced relaxation of rat aortic rings precontracted with phenylephrine was greatly reduced by the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 300 microM) or the soluble guanylate cyclase inhibitors methylene blue (10 microM) or IH-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) but unaffected by indomethacin (10 microM), a cyclo-oxygenase inhibitor. Similarly, in intact rings, the concentration-response curve of forskolin (10 nM to 1 microM) was shifted to the right upon endothelium removal or treatment with methylene blue. 3. In endothelium-denuded rat aortic rings, isoprenaline-induced relaxation was potentiated by the guanylate cyclase activators atrial natriuretic factor (ANF, 1 to 10 nM) and sodium nitroprusside (SNP, 1 to 10 nM), and to a greater extent in the presence of the cyclic GMP-specific phosphodiesterase (PDE 5) inhibitor, 1,3dimethyl-6-(2-propoxy-5-methane sulphonylamidophenyl) pyrazolo [3,4-d] pyrimidin-4-(5H)-one (DMPPO, 30 nM). Relaxation induced by isoprenaline was also potentiated by the cyclic GMP-inhibited PDE (PDE 3) inhibitor cilostamide (100 nM). 4. Intracellular cyclic nucleotide levels were measured either in rat cultured aortic smooth muscle cells or in de-endothelialized aortic rings. In both types of preparation, isoprenaline (5 nM and 10 microM) increased cyclic AMP levels and this effect was potentiated by cilostamide (10 microM), by rolipram, a cyclic AMP-specific PDE (PDE 4) inhibitor (10 microM) and by cyclic GMP-elevating agents (50 nM ANF or 30 nM SNP plus 100 nM DMPPO). In isoprenaline-stimulated conditions, the increase in cyclic AMP induced by rolipram was further potentiated by cilostamide and by cyclic GMP-elevating agents. Cilostamide and cyclic GMP-elevating agents did not potentiate each other, suggesting a similar mechanism of action. 5. We conclude that in vascular smooth muscle (VSM) cells an increase in cyclic GMP levels may inhibit PDE 3 and, thereby, cyclic AMP catabolism. Under physiological conditions of constitutive NO release, and to a greater extent in the presence of the PDE 5 inhibitor DMPPO, cyclic GMP should act synergistically with adenylate cyclase activators to relax VSM.

Full text

PDF
471

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B., Trachte G. J. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev. 1993 Dec;45(4):455–497. [PubMed] [Google Scholar]
  2. Buxton I. L., Brunton L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 1983 Sep 10;258(17):10233–10239. [PubMed] [Google Scholar]
  3. Chamley J. H., Campbell G. R., McConnell J. D., Gröschel-Stewart U. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res. 1977 Feb 14;177(4):503–522. doi: 10.1007/BF00220611. [DOI] [PubMed] [Google Scholar]
  4. Cornwell T. L., Lincoln T. M. Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. Reduction of Ca2+ by atriopeptin and 8-bromo-cyclic GMP is mediated by cyclic GMP-dependent protein kinase. J Biol Chem. 1989 Jan 15;264(2):1146–1155. [PubMed] [Google Scholar]
  5. Coste H., Grondin P. Characterization of a novel potent and specific inhibitor of type V phosphodiesterase. Biochem Pharmacol. 1995 Nov 9;50(10):1577–1585. doi: 10.1016/0006-2952(95)02031-4. [DOI] [PubMed] [Google Scholar]
  6. Fredholm B. B., Sollevi A. Cardiovascular effects of adenosine. Clin Physiol. 1986 Feb;6(1):1–21. doi: 10.1111/j.1475-097x.1986.tb00139.x. [DOI] [PubMed] [Google Scholar]
  7. Garbers D. L. Guanylate cyclase, a cell surface receptor. J Biol Chem. 1989 Jun 5;264(16):9103–9106. [PubMed] [Google Scholar]
  8. Gerzer R., Hofmann F., Schultz G. Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem. 1981 Jun 1;116(3):479–486. doi: 10.1111/j.1432-1033.1981.tb05361.x. [DOI] [PubMed] [Google Scholar]
  9. Grace G. C., Macdonald P. S., Dusting G. J. Cyclic nucleotide interactions involved in endothelium-dependent dilatation in rat aortic rings. Eur J Pharmacol. 1988 Mar 22;148(1):17–24. doi: 10.1016/0014-2999(88)90449-9. [DOI] [PubMed] [Google Scholar]
  10. Graier W. F., Groschner K., Schmidt K., Kukovetz W. R. Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J. 1992 Dec 1;288(Pt 2):345–349. doi: 10.1042/bj2880345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray D. W., Marshall I. Novel signal transduction pathway mediating endothelium-dependent beta-adrenoceptor vasorelaxation in rat thoracic aorta. Br J Pharmacol. 1992 Nov;107(3):684–690. doi: 10.1111/j.1476-5381.1992.tb14507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayes J. S., Brunton L. L., Mayer S. E. Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem. 1980 Jun 10;255(11):5113–5119. [PubMed] [Google Scholar]
  13. Hohl C. M., Li Q. A. Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circ Res. 1991 Nov;69(5):1369–1379. doi: 10.1161/01.res.69.5.1369. [DOI] [PubMed] [Google Scholar]
  14. Jang E. K., Davidson M. M., Crankshaw D., Haslam R. J. Synergistic inhibitory effects of atriopeptin II and isoproterenol on contraction of rat aortic smooth muscle: roles of cGMP and cAMP. Eur J Pharmacol. 1993 Dec 21;250(3):477–481. doi: 10.1016/0014-2999(93)90038-j. [DOI] [PubMed] [Google Scholar]
  15. Komas N., Lugnier C., Stoclet J. C. Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors. Br J Pharmacol. 1991 Oct;104(2):495–503. doi: 10.1111/j.1476-5381.1991.tb12457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuhn M., Otten A., Frölich J. C., Förstermann U. Endothelial cyclic GMP and cyclic AMP do not regulate the release of endothelium-derived relaxing factor/nitric oxide from bovine aortic endothelial cells. J Pharmacol Exp Ther. 1991 Feb;256(2):677–682. [PubMed] [Google Scholar]
  17. Lincoln T. M., Cornwell T. L., Taylor A. E. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am J Physiol. 1990 Mar;258(3 Pt 1):C399–C407. doi: 10.1152/ajpcell.1990.258.3.C399. [DOI] [PubMed] [Google Scholar]
  18. Lugnier C., Komas N. Modulation of vascular cyclic nucleotide phosphodiesterases by cyclic GMP: role in vasodilatation. Eur Heart J. 1993 Nov;14 (Suppl 1):141–148. [PubMed] [Google Scholar]
  19. Lüscher T. F. Endothelium-derived nitric oxide: the endogenous nitrovasodilator in the human cardiovascular system. Eur Heart J. 1991 Nov;12 (Suppl E):2–11. doi: 10.1093/eurheartj/12.suppl_e.2. [DOI] [PubMed] [Google Scholar]
  20. Macdonald P. S., Dubbin P. N., Dusting G. J. Beta-adrenoceptors on endothelial cells do not influence release of relaxing factor in dog coronary arteries. Clin Exp Pharmacol Physiol. 1987 Jun;14(6):525–534. doi: 10.1111/j.1440-1681.1987.tb01508.x. [DOI] [PubMed] [Google Scholar]
  21. Manganiello V. C., Murata T., Taira M., Belfrage P., Degerman E. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch Biochem Biophys. 1995 Sep 10;322(1):1–13. doi: 10.1006/abbi.1995.1429. [DOI] [PubMed] [Google Scholar]
  22. Maurice D. H., Crankshaw D., Haslam R. J. Synergistic actions of nitrovasodilators and isoprenaline on rat aortic smooth muscle. Eur J Pharmacol. 1991 Jan 10;192(2):235–242. doi: 10.1016/0014-2999(91)90048-u. [DOI] [PubMed] [Google Scholar]
  23. Maurice D. H., Haslam R. J. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol. 1990 May;37(5):671–681. [PubMed] [Google Scholar]
  24. Muller B., Stoclet J. C., Lugnier C. Cytosolic and membrane-bound cyclic nucleotide phosphodiesterases from guinea pig cardiac ventricles. Eur J Pharmacol. 1992 Mar 12;225(3):263–272. doi: 10.1016/0922-4106(92)90028-t. [DOI] [PubMed] [Google Scholar]
  25. Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986 Jul;78(1):1–5. doi: 10.1172/JCI112536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murray K. J. Cyclic AMP and mechanisms of vasodilation. Pharmacol Ther. 1990;47(3):329–345. doi: 10.1016/0163-7258(90)90060-f. [DOI] [PubMed] [Google Scholar]
  27. Oliva D., Nicosia S. PGI2-receptors and molecular mechanisms in platelets and vasculature: state of the art. Pharmacol Res Commun. 1987 Nov;19(11):735–765. doi: 10.1016/0031-6989(87)90010-5. [DOI] [PubMed] [Google Scholar]
  28. Reeves M. L., Leigh B. K., England P. J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987 Jan 15;241(2):535–541. doi: 10.1042/bj2410535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Satake N., Zhou Q., Morikawa M., Inoue M., Shibata S. Potentiating effect of nicorandil, an antianginal agent, on relaxation induced by isoproterenol in isolated rat aorta: involvement of cyclic GMP-inhibitable cyclic AMP phosphodiesterase. J Cardiovasc Pharmacol. 1995 Mar;25(3):489–494. doi: 10.1097/00005344-199503000-00022. [DOI] [PubMed] [Google Scholar]
  30. Sonnenburg W. K., Beavo J. A. Cyclic GMP and regulation of cyclic nucleotide hydrolysis. Adv Pharmacol. 1994;26:87–114. doi: 10.1016/s1054-3589(08)60052-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES