Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Oct;119(3):555–563. doi: 10.1111/j.1476-5381.1996.tb15708.x

A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells.

T Watano 1, J Kimura 1, T Morita 1, H Nakanishi 1
PMCID: PMC1915719  PMID: 8894178

Abstract

1. The effects of No. 7943 on the Na+/Ca2+ exchange current and on other membrane currents were investigated in single cardiac ventricular cells of guinea-pig with the whole-cell voltage-clamp technique. 2. No. 7943 at 0.1-10 microM suppressed the outward Na+/Ca2+ exchange current in a concentration-dependent manner. The suppression was reversible and the IC50 value was approximately 0.32 microM. 3. No. 7943 at 5-50 microM suppressed also the inward Na+/Ca2+ exchange current in a concentration-dependent manner but with a higher IC50 value of approximately 17 microM. 4. In a concentration-response curve, No. 7943 raised the K(m)Ca2+ value, but did not affect the Imax value, indicating that No. 7943 is a competitive antagonist with external Ca2+ for the outward Na+/ Ca2+ exchange current. 5. The voltage-gated Na+ current, Ca2+ current and the inward rectifier K+ current were also inhibited by No. 7943 with IC50S of approximately 14, 8 and 7 microM, respectively. 6. In contrast to No. 7943, 3', 4'-dichlorobenzamil (DCB) at 3-30 microM suppressed the inward Na+/Ca2+ exchange current with IC50 of 17 microM, but did not affect the outward exchange current at these concentrations. 7. We conclude that No. 7943 inhibits the outward Na+/Ca2+ exchange current more potently than any other currents as a competitive inhibitor with external Ca2+. This effect is in contrast to DCB which preferentially inhibits the inward rather than the outward Na+/Ca2+ exchange current.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Cairns S. P., Turvey S. E., Lee J. A. Intracellular calcium and myocardial function during ischemia. Adv Exp Med Biol. 1993;346:19–29. doi: 10.1007/978-1-4615-2946-0_3. [DOI] [PubMed] [Google Scholar]
  2. Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
  3. Bersohn M. M., Philipson K. D., Weiss R. S. Lysophosphatidylcholine and sodium-calcium exchange in cardiac sarcolemma: comparison with ischemia. Am J Physiol. 1991 Mar;260(3 Pt 1):C433–C438. doi: 10.1152/ajpcell.1991.260.3.C433. [DOI] [PubMed] [Google Scholar]
  4. Bielefeld D. R., Hadley R. W., Vassilev P. M., Hume J. R. Membrane electrical properties of vesicular Na-Ca exchange inhibitors in single atrial myocytes. Circ Res. 1986 Oct;59(4):381–389. doi: 10.1161/01.res.59.4.381. [DOI] [PubMed] [Google Scholar]
  5. Blaustein M. P., Russell J. M. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membr Biol. 1975 Jul 24;22(3-4):285–312. doi: 10.1007/BF01868176. [DOI] [PubMed] [Google Scholar]
  6. Chin T. K., Spitzer K. W., Philipson K. D., Bridge J. H. The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circ Res. 1993 Mar;72(3):497–503. doi: 10.1161/01.res.72.3.497. [DOI] [PubMed] [Google Scholar]
  7. Coetzee W. A., Opie L. H. Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ Res. 1987 Aug;61(2):157–165. doi: 10.1161/01.res.61.2.157. [DOI] [PubMed] [Google Scholar]
  8. Dennis S. C., Gevers W., Opie L. H. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991 Sep;23(9):1077–1086. doi: 10.1016/0022-2828(91)91642-5. [DOI] [PubMed] [Google Scholar]
  9. Frelin C., Vigne P., Lazdunski M. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem. 1984 Jul 25;259(14):8880–8885. [PubMed] [Google Scholar]
  10. Garcia M. L., Slaughter R. S., King V. F., Kaczorowski G. J. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 2. Mechanism of inhibition by bepridil. Biochemistry. 1988 Apr 5;27(7):2410–2415. doi: 10.1021/bi00407a024. [DOI] [PubMed] [Google Scholar]
  11. Kaczorowski G. J., Barros F., Dethmers J. K., Trumble M. J., Cragoe E. J., Jr Inhibition of Na+/Ca2+ exchange in pituitary plasma membrane vesicles by analogues of amiloride. Biochemistry. 1985 Mar 12;24(6):1394–1403. doi: 10.1021/bi00327a017. [DOI] [PubMed] [Google Scholar]
  12. Khananshvili D. Voltage-dependent modulation of ion binding and translocation in the cardiac Na(+)-Ca2+ exchange system. J Biol Chem. 1991 Jul 25;266(21):13764–13769. [PubMed] [Google Scholar]
  13. Kimura J. Effects of external Mg2+ on the Na-Ca exchange current in guinea pig cardiac myocytes. Ann N Y Acad Sci. 1996 Apr 15;779:515–520. doi: 10.1111/j.1749-6632.1996.tb44825.x. [DOI] [PubMed] [Google Scholar]
  14. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
  16. Kusuoka H., Camilion de Hurtado M. C., Marban E. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution. J Am Coll Cardiol. 1993 Jan;21(1):240–248. doi: 10.1016/0735-1097(93)90743-k. [DOI] [PubMed] [Google Scholar]
  17. Li J. M., Kimura J. Translocation mechanism of cardiac Na-Ca exchange. Ann N Y Acad Sci. 1991;639:48–60. doi: 10.1111/j.1749-6632.1991.tb17288.x. [DOI] [PubMed] [Google Scholar]
  18. Li Z., Nicoll D. A., Collins A., Hilgemann D. W., Filoteo A. G., Penniston J. T., Weiss J. N., Tomich J. M., Philipson K. D. Identification of a peptide inhibitor of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. J Biol Chem. 1991 Jan 15;266(2):1014–1020. [PubMed] [Google Scholar]
  19. Miura Y., Kimura J. Sodium-calcium exchange current. Dependence on internal Ca and Na and competitive binding of external Na and Ca. J Gen Physiol. 1989 Jun;93(6):1129–1145. doi: 10.1085/jgp.93.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murata Y., Harada K., Nakajima F., Maruo J., Morita T. Non-selective effects of amiloride and its analogues on ion transport systems and their cytotoxicities in cardiac myocytes. Jpn J Pharmacol. 1995 Jul;68(3):279–285. doi: 10.1254/jjp.68.279. [DOI] [PubMed] [Google Scholar]
  21. Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
  22. Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
  23. Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
  24. Philipson K. D. Interaction of charged amphiphiles with Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. J Biol Chem. 1984 Nov 25;259(22):13999–14002. [PubMed] [Google Scholar]
  25. Poole-Wilson P. A. Regulation of intracellular pH in the myocardium; relevance to pathology. Mol Cell Biochem. 1989 Sep 7;89(2):151–155. doi: 10.1007/BF00220768. [DOI] [PubMed] [Google Scholar]
  26. Reeves J. P., Sutko J. L. Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem. 1983 Mar 10;258(5):3178–3182. [PubMed] [Google Scholar]
  27. Scholz W., Albus U., Lang H. J., Linz W., Martorana P. A., Englert H. C., Schölkens B. A. Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Br J Pharmacol. 1993 Jun;109(2):562–568. doi: 10.1111/j.1476-5381.1993.tb13607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Siegl P. K., Cragoe E. J., Jr, Trumble M. J., Kaczorowski G. J. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci U S A. 1984 May;81(10):3238–3242. doi: 10.1073/pnas.81.10.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Slaughter R. S., Garcia M. L., Cragoe E. J., Jr, Reeves J. P., Kaczorowski G. J. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 1. Mechanism of inhibition by amiloride analogues. Biochemistry. 1988 Apr 5;27(7):2403–2409. doi: 10.1021/bi00407a023. [DOI] [PubMed] [Google Scholar]
  30. Steenbergen C., Deleeuw G., Rich T., Williamson J. R. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res. 1977 Dec;41(6):849–858. doi: 10.1161/01.res.41.6.849. [DOI] [PubMed] [Google Scholar]
  31. Suarez-Kurtz G., Kaczorowski G. J. Effects of dichlorobenzamil on calcium currents in clonal GH3 pituitary cells. J Pharmacol Exp Ther. 1988 Oct;247(1):248–253. [PubMed] [Google Scholar]
  32. Trosper T. L., Philipson K. D. Effects of divalent and trivalent cations on Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1983 May 26;731(1):63–68. doi: 10.1016/0005-2736(83)90398-x. [DOI] [PubMed] [Google Scholar]
  33. Ver Donck L., Borgers M., Verdonck F. Inhibition of sodium and calcium overload pathology in the myocardium: a new cytoprotective principle. Cardiovasc Res. 1993 Mar;27(3):349–357. doi: 10.1093/cvr/27.3.349. [DOI] [PubMed] [Google Scholar]
  34. Wright A. R., Rees S. A., Vandenberg J. I., Twist V. W., Powell T. Extracellular osmotic pressure modulates sodium-calcium exchange in isolated guinea-pig ventricular myocytes. J Physiol. 1995 Oct 15;488(Pt 2):293–301. doi: 10.1113/jphysiol.1995.sp020967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. de la Peña P., Reeves J. P. Inhibition and activation of Na+-Ca2+ exchange activity by quinacrine. Am J Physiol. 1987 Jan;252(1 Pt 1):C24–C29. doi: 10.1152/ajpcell.1987.252.1.C24. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES