Abstract
1. The effects of No. 7943 on the Na+/Ca2+ exchange current and on other membrane currents were investigated in single cardiac ventricular cells of guinea-pig with the whole-cell voltage-clamp technique. 2. No. 7943 at 0.1-10 microM suppressed the outward Na+/Ca2+ exchange current in a concentration-dependent manner. The suppression was reversible and the IC50 value was approximately 0.32 microM. 3. No. 7943 at 5-50 microM suppressed also the inward Na+/Ca2+ exchange current in a concentration-dependent manner but with a higher IC50 value of approximately 17 microM. 4. In a concentration-response curve, No. 7943 raised the K(m)Ca2+ value, but did not affect the Imax value, indicating that No. 7943 is a competitive antagonist with external Ca2+ for the outward Na+/ Ca2+ exchange current. 5. The voltage-gated Na+ current, Ca2+ current and the inward rectifier K+ current were also inhibited by No. 7943 with IC50S of approximately 14, 8 and 7 microM, respectively. 6. In contrast to No. 7943, 3', 4'-dichlorobenzamil (DCB) at 3-30 microM suppressed the inward Na+/Ca2+ exchange current with IC50 of 17 microM, but did not affect the outward exchange current at these concentrations. 7. We conclude that No. 7943 inhibits the outward Na+/Ca2+ exchange current more potently than any other currents as a competitive inhibitor with external Ca2+. This effect is in contrast to DCB which preferentially inhibits the inward rather than the outward Na+/Ca2+ exchange current.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Cairns S. P., Turvey S. E., Lee J. A. Intracellular calcium and myocardial function during ischemia. Adv Exp Med Biol. 1993;346:19–29. doi: 10.1007/978-1-4615-2946-0_3. [DOI] [PubMed] [Google Scholar]
- Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
- Bersohn M. M., Philipson K. D., Weiss R. S. Lysophosphatidylcholine and sodium-calcium exchange in cardiac sarcolemma: comparison with ischemia. Am J Physiol. 1991 Mar;260(3 Pt 1):C433–C438. doi: 10.1152/ajpcell.1991.260.3.C433. [DOI] [PubMed] [Google Scholar]
- Bielefeld D. R., Hadley R. W., Vassilev P. M., Hume J. R. Membrane electrical properties of vesicular Na-Ca exchange inhibitors in single atrial myocytes. Circ Res. 1986 Oct;59(4):381–389. doi: 10.1161/01.res.59.4.381. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P., Russell J. M. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membr Biol. 1975 Jul 24;22(3-4):285–312. doi: 10.1007/BF01868176. [DOI] [PubMed] [Google Scholar]
- Chin T. K., Spitzer K. W., Philipson K. D., Bridge J. H. The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circ Res. 1993 Mar;72(3):497–503. doi: 10.1161/01.res.72.3.497. [DOI] [PubMed] [Google Scholar]
- Coetzee W. A., Opie L. H. Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ Res. 1987 Aug;61(2):157–165. doi: 10.1161/01.res.61.2.157. [DOI] [PubMed] [Google Scholar]
- Dennis S. C., Gevers W., Opie L. H. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991 Sep;23(9):1077–1086. doi: 10.1016/0022-2828(91)91642-5. [DOI] [PubMed] [Google Scholar]
- Frelin C., Vigne P., Lazdunski M. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem. 1984 Jul 25;259(14):8880–8885. [PubMed] [Google Scholar]
- Garcia M. L., Slaughter R. S., King V. F., Kaczorowski G. J. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 2. Mechanism of inhibition by bepridil. Biochemistry. 1988 Apr 5;27(7):2410–2415. doi: 10.1021/bi00407a024. [DOI] [PubMed] [Google Scholar]
- Kaczorowski G. J., Barros F., Dethmers J. K., Trumble M. J., Cragoe E. J., Jr Inhibition of Na+/Ca2+ exchange in pituitary plasma membrane vesicles by analogues of amiloride. Biochemistry. 1985 Mar 12;24(6):1394–1403. doi: 10.1021/bi00327a017. [DOI] [PubMed] [Google Scholar]
- Khananshvili D. Voltage-dependent modulation of ion binding and translocation in the cardiac Na(+)-Ca2+ exchange system. J Biol Chem. 1991 Jul 25;266(21):13764–13769. [PubMed] [Google Scholar]
- Kimura J. Effects of external Mg2+ on the Na-Ca exchange current in guinea pig cardiac myocytes. Ann N Y Acad Sci. 1996 Apr 15;779:515–520. doi: 10.1111/j.1749-6632.1996.tb44825.x. [DOI] [PubMed] [Google Scholar]
- Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
- Kusuoka H., Camilion de Hurtado M. C., Marban E. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution. J Am Coll Cardiol. 1993 Jan;21(1):240–248. doi: 10.1016/0735-1097(93)90743-k. [DOI] [PubMed] [Google Scholar]
- Li J. M., Kimura J. Translocation mechanism of cardiac Na-Ca exchange. Ann N Y Acad Sci. 1991;639:48–60. doi: 10.1111/j.1749-6632.1991.tb17288.x. [DOI] [PubMed] [Google Scholar]
- Li Z., Nicoll D. A., Collins A., Hilgemann D. W., Filoteo A. G., Penniston J. T., Weiss J. N., Tomich J. M., Philipson K. D. Identification of a peptide inhibitor of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. J Biol Chem. 1991 Jan 15;266(2):1014–1020. [PubMed] [Google Scholar]
- Miura Y., Kimura J. Sodium-calcium exchange current. Dependence on internal Ca and Na and competitive binding of external Na and Ca. J Gen Physiol. 1989 Jun;93(6):1129–1145. doi: 10.1085/jgp.93.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murata Y., Harada K., Nakajima F., Maruo J., Morita T. Non-selective effects of amiloride and its analogues on ion transport systems and their cytotoxicities in cardiac myocytes. Jpn J Pharmacol. 1995 Jul;68(3):279–285. doi: 10.1254/jjp.68.279. [DOI] [PubMed] [Google Scholar]
- Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
- Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
- Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
- Philipson K. D. Interaction of charged amphiphiles with Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. J Biol Chem. 1984 Nov 25;259(22):13999–14002. [PubMed] [Google Scholar]
- Poole-Wilson P. A. Regulation of intracellular pH in the myocardium; relevance to pathology. Mol Cell Biochem. 1989 Sep 7;89(2):151–155. doi: 10.1007/BF00220768. [DOI] [PubMed] [Google Scholar]
- Reeves J. P., Sutko J. L. Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem. 1983 Mar 10;258(5):3178–3182. [PubMed] [Google Scholar]
- Scholz W., Albus U., Lang H. J., Linz W., Martorana P. A., Englert H. C., Schölkens B. A. Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Br J Pharmacol. 1993 Jun;109(2):562–568. doi: 10.1111/j.1476-5381.1993.tb13607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegl P. K., Cragoe E. J., Jr, Trumble M. J., Kaczorowski G. J. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci U S A. 1984 May;81(10):3238–3242. doi: 10.1073/pnas.81.10.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slaughter R. S., Garcia M. L., Cragoe E. J., Jr, Reeves J. P., Kaczorowski G. J. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 1. Mechanism of inhibition by amiloride analogues. Biochemistry. 1988 Apr 5;27(7):2403–2409. doi: 10.1021/bi00407a023. [DOI] [PubMed] [Google Scholar]
- Steenbergen C., Deleeuw G., Rich T., Williamson J. R. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res. 1977 Dec;41(6):849–858. doi: 10.1161/01.res.41.6.849. [DOI] [PubMed] [Google Scholar]
- Suarez-Kurtz G., Kaczorowski G. J. Effects of dichlorobenzamil on calcium currents in clonal GH3 pituitary cells. J Pharmacol Exp Ther. 1988 Oct;247(1):248–253. [PubMed] [Google Scholar]
- Trosper T. L., Philipson K. D. Effects of divalent and trivalent cations on Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1983 May 26;731(1):63–68. doi: 10.1016/0005-2736(83)90398-x. [DOI] [PubMed] [Google Scholar]
- Ver Donck L., Borgers M., Verdonck F. Inhibition of sodium and calcium overload pathology in the myocardium: a new cytoprotective principle. Cardiovasc Res. 1993 Mar;27(3):349–357. doi: 10.1093/cvr/27.3.349. [DOI] [PubMed] [Google Scholar]
- Wright A. R., Rees S. A., Vandenberg J. I., Twist V. W., Powell T. Extracellular osmotic pressure modulates sodium-calcium exchange in isolated guinea-pig ventricular myocytes. J Physiol. 1995 Oct 15;488(Pt 2):293–301. doi: 10.1113/jphysiol.1995.sp020967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Peña P., Reeves J. P. Inhibition and activation of Na+-Ca2+ exchange activity by quinacrine. Am J Physiol. 1987 Jan;252(1 Pt 1):C24–C29. doi: 10.1152/ajpcell.1987.252.1.C24. [DOI] [PubMed] [Google Scholar]