Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Sep;119(1):15–22. doi: 10.1111/j.1476-5381.1996.tb15671.x

Calphostin C-sensitive enhancements of force by lysophosphatidylinositol and diacylglycerols in mesenteric arteries from the rat.

P E Jensen 1
PMCID: PMC1915738  PMID: 8872351

Abstract

1. A pharmacological characterization was made of the effects of lysophosphatidyl-inositol (lysoPI) and -ethanolamine (lysoPE) on the Ca(2+)-sensitivity of contraction in alpha-toxin permeabilized rat mesenteric arteries. The effect of GTP gamma S (G-protein activator), diacylglycerols (DAGs, dioctanoyl glycerol (diC8) and 1-stearoyl-2-arachidonoyl-sn-glycerol) and phorbol myristate acetate (PMA, protein kinase C (PKC) activator) on Ca(2+)-sensitivity was also assessed. 2. LysoPI increased the Ca(2+)-sensitivity, demonstrated by both an increase in tension induced by 1 microM [Ca2+]free and an increase in the Ca(2+)-sensitivity of Ca2+ concentration-tension curves. LysoPE did not enhance force or Ca(2+)-sensitivity. 3. GTP gamma S enhanced force at constant Ca2+, increased the Ca(2+)-sensitivity, and increased force under Ca(2+)-free conditions. PMA also increased force at constant Ca2+ and increased Ca(2+)-sensitivity, but caused no force development under Ca(2+)-free conditions. 4. DAGs, both diC8 and the more physiological relevant DAG, 1-stearoyl-2-arachidonoyl-sn-glycerol, enhanced force at constant Ca2+ and increased the Ca(2+)-sensitivity. DiC8, in contrast to 1-stearoyl-2-arachidonoyl-sn-glycerol, caused force development under Ca(2+)-free conditions and substantially enhanced force at maximal Ca(2+)-induced contraction. GDP-beta-S abolished the increased Ca(2+)-sensitization induced by noradrenaline, but not that by DAGs. 5. The PKC inhibitor calphostin C completely abolished Ca(2+)-sensitization induced by all of the Ca(2+)-sensitizing agents. 6. These results show that lysoPI can increase the Ca(2+)-sensitivity of smooth muscle contraction, and the Ca(2+)-sensitization induced by DAGs was not completely G-protein mediated, because it was not inhibited by GDP-beta-S. A central role for PKC in regulation of Ca(2+)-sensitization in rat mesenteric small arteries was indicated by the abolishment of Ca(2+)-sensitization by calphostin C.

Full text

PDF
15

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boonen H. C., De Mey J. G. G-proteins are involved in contractile responses of isolated mesenteric resistance arteries to agonists. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):462–468. doi: 10.1007/BF00169465. [DOI] [PubMed] [Google Scholar]
  2. Chatterjee M., Tejada M. Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol. 1986 Sep;251(3 Pt 1):C356–C361. doi: 10.1152/ajpcell.1986.251.3.C356. [DOI] [PubMed] [Google Scholar]
  3. Crichton C. A., Templeton A. G., McGrath J. C., Smith G. L. Thromboxane A2 analogue, U-46619, potentiates calcium-activated force in human umbilical artery. Am J Physiol. 1993 Jun;264(6 Pt 2):H1878–H1883. doi: 10.1152/ajpheart.1993.264.6.H1878. [DOI] [PubMed] [Google Scholar]
  4. Fujita A., Takeuchi T., Nakajima H., Nishio H., Hata F. Involvement of heterotrimeric GTP-binding protein and rho protein, but not protein kinase C, in agonist-induced Ca2+ sensitization of skinned muscle of guinea pig vas deferens. J Pharmacol Exp Ther. 1995 Jul;274(1):555–561. [PubMed] [Google Scholar]
  5. Gong M. C., Fuglsang A., Alessi D., Kobayashi S., Cohen P., Somlyo A. V., Somlyo A. P. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 1992 Oct 25;267(30):21492–21498. [PubMed] [Google Scholar]
  6. Hirata K., Kikuchi A., Sasaki T., Kuroda S., Kaibuchi K., Matsuura Y., Seki H., Saida K., Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 1992 May 5;267(13):8719–8722. [PubMed] [Google Scholar]
  7. Hori M., Sato K., Miyamoto S., Ozaki H., Karaki H. Different pathways of calcium sensitization activated by receptor agonists and phorbol esters in vascular smooth muscle. Br J Pharmacol. 1993 Dec;110(4):1527–1531. doi: 10.1111/j.1476-5381.1993.tb13996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Itagaki M., Komori S., Unno T., Syuto B., Ohashi H. Possible involvement of a small G-protein sensitive to exoenzyme C3 of Clostridium botulinum in the regulation of myofilament Ca2+ sensitivity in beta-escin skinned smooth muscle of guinea pig ileum. Jpn J Pharmacol. 1995 Jan;67(1):1–7. doi: 10.1254/jjp.67.1. [DOI] [PubMed] [Google Scholar]
  9. Itoh T., Suzuki A., Watanabe Y. Effect of a peptide inhibitor of protein kinase C on G-protein-mediated increase in myofilament Ca(2+)-sensitivity in rabbit arterial skinned muscle. Br J Pharmacol. 1994 Jan;111(1):311–317. doi: 10.1111/j.1476-5381.1994.tb14061.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jensen P. E., Hughes A., Boonen H. C., Aalkjaer C. Force, membrane potential, and [Ca2+]i during activation of rat mesenteric small arteries with norepinephrine, potassium, aluminum fluoride, and phorbol ester. Effects of changes in pHi. Circ Res. 1993 Aug;73(2):314–324. doi: 10.1161/01.res.73.2.314. [DOI] [PubMed] [Google Scholar]
  11. Jensen P. E., Mulvany M. J., Aalkjaer C. Endogenous and exogenous agonist-induced changes in the coupling between [Ca2+]i and force in rat resistance arteries. Pflugers Arch. 1992 Apr;420(5-6):536–543. doi: 10.1007/BF00374630. [DOI] [PubMed] [Google Scholar]
  12. Jensen P. E., Ohanian J., Stausbøl-Grøn B., Buus N. H., Aalkjaer C. Increase by lysophosphatidylcholines of smooth muscle Ca2+ sensitivity in alpha-toxin-permeabilized small mesenteric artery from the rat. Br J Pharmacol. 1996 Mar;117(6):1238–1244. doi: 10.1111/j.1476-5381.1996.tb16721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kahn R. A. Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins. J Biol Chem. 1991 Aug 25;266(24):15595–15597. [PubMed] [Google Scholar]
  14. Kawase T., Van Breemen C. Aluminum fluoride induces a reversible Ca2+ sensitization in alpha-toxin-permeabilized vascular smooth muscle. Eur J Pharmacol. 1992 Apr 7;214(1):39–44. doi: 10.1016/0014-2999(92)90093-j. [DOI] [PubMed] [Google Scholar]
  15. Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
  16. Masuo M., Reardon S., Ikebe M., Kitazawa T. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase. J Gen Physiol. 1994 Aug;104(2):265–286. doi: 10.1085/jgp.104.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishimura J., Khalil R. A., Drenth J. P., van Breemen C. Evidence for increased myofilament Ca2+ sensitivity in norepinephrine-activated vascular smooth muscle. Am J Physiol. 1990 Jul;259(1 Pt 2):H2–H8. doi: 10.1152/ajpheart.1990.259.1.H2. [DOI] [PubMed] [Google Scholar]
  18. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  19. Nishimura J., Moreland S., Ahn H. Y., Kawase T., Moreland R. S., van Breemen C. Endothelin increases myofilament Ca2+ sensitivity in alpha-toxin-permeabilized rabbit mesenteric artery. Circ Res. 1992 Oct;71(4):951–959. doi: 10.1161/01.res.71.4.951. [DOI] [PubMed] [Google Scholar]
  20. Ohanian J., Ollerenshaw J., Collins P., Heagerty A. Agonist-induced production of 1,2-diacylglycerol and phosphatidic acid in intact resistance arteries. Evidence that accumulation of diacylglycerol is not a prerequisite for contraction. J Biol Chem. 1990 May 25;265(15):8921–8928. [PubMed] [Google Scholar]
  21. Oishi K., Raynor R. L., Charp P. A., Kuo J. F. Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J Biol Chem. 1988 May 15;263(14):6865–6871. [PubMed] [Google Scholar]
  22. Rapoport R. M., Campbell A. K., Bazan E. Effects of PKC downregulation on norepinephrine- and prostaglandin F2 alpha-induced contraction in rat aorta. Am J Physiol. 1995 Aug;269(2 Pt 2):H590–H598. doi: 10.1152/ajpheart.1995.269.2.H590. [DOI] [PubMed] [Google Scholar]
  23. Ruzycky A. L., Morgan K. G. Involvement of the protein kinase C system in calcium-force relationships in ferret aorta. Br J Pharmacol. 1989 Jun;97(2):391–400. doi: 10.1111/j.1476-5381.1989.tb11966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Satoh S., Rensland H., Pfitzer G. Ras proteins increase Ca(2+)-responsiveness of smooth muscle contraction. FEBS Lett. 1993 Jun 14;324(2):211–215. doi: 10.1016/0014-5793(93)81395-g. [DOI] [PubMed] [Google Scholar]
  25. Sohn U. D., Chiu T. T., Bitar K. N., Hillemeier C., Behar J., Biancani P. Calcium requirements for acetylcholine-induced contraction of cat esophageal circular muscle cells. Am J Physiol. 1994 Feb;266(2 Pt 1):G330–G338. doi: 10.1152/ajpgi.1994.266.2.G330. [DOI] [PubMed] [Google Scholar]
  26. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  27. Stabel S., Parker P. J. Protein kinase C. Pharmacol Ther. 1991;51(1):71–95. doi: 10.1016/0163-7258(91)90042-k. [DOI] [PubMed] [Google Scholar]
  28. Ward D. T., Ohanian J., Heagerty A. M., Ohanian V. Phospholipase D-induced phosphatidate production in intact small arteries during noradrenaline stimulation: involvement of both G-protein and tyrosine-phosphorylation-linked pathways. Biochem J. 1995 Apr 15;307(Pt 2):451–456. doi: 10.1042/bj3070451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES