Abstract
1. The renal handling of iohexol was examined in the rat isolated perfused kidney (IPK) over a perfusate concentration range of 5-20 micrograms ml-1. 2. At a concentration of 5 micrograms ml-1, a ratio of renal clearance over clearance by glomerular filtration (ClR/GF) of 0.63 +/- 0.06 could be determined. This ratio increased until 1.02 +/- 0.06 at 20 micrograms ml-1, indicating that a saturable mechanism is involved in the luminal disappearance of the drug. 3. Pretreatment of the kidneys with polylysine, probenecid or diatrizoate resulted in a significantly enhanced clearance of iohexol, probably due to inhibition of membrane binding. Renal clearance data were fitted to a kinetic model including filtration into the primary urine followed by saturable absorption at the luminal membrane. An absorption constant, KA, of 7.3 +/- 1.3 micrograms ml-1, and a maximum rate of absorption, VA,Max, of 1.4 +/- 0.1 micrograms min-1 were determined. 4. Iohexol accumulated in kidney tissue, reaching a concentration of 2 to 7.5 times the perfusate concentration. In freshly isolated proximal tubular cells and kidney cortex mitochondria, iohexol reduced the uncoupled respiratory rate at a concentration comparable to the highest tissue concentration found in the IPK. 5. In conclusion, iohexol is not only filtered by the kidney but also reabsorbed via a saturable mechanism, which results in tubular accumulation. Intracellularly sequestered iohexol may affect mitochondrial oxidative metabolism. Our results indicate that iohexol is not a true filtration marker.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett B. J., Parfrey P. S., Vavasour H. M., McDonald J., Kent G., Hefferton D., O'Dea F., Stone E., Reddy R., McManamon P. J. Contrast nephropathy in patients with impaired renal function: high versus low osmolar media. Kidney Int. 1992 May;41(5):1274–1279. doi: 10.1038/ki.1992.189. [DOI] [PubMed] [Google Scholar]
- Beaufils H., Idée J. M., Berthommier C., Balut C., Bourbouze R., Nimier K., Chicandre-Jouanneau C., Bonnemain B. Iobitridol, a new nonionic low-osmolality contrast agent, and iohexol. Impact on renal histology in the rat. Invest Radiol. 1995 Jan;30(1):33–39. doi: 10.1097/00004424-199501000-00005. [DOI] [PubMed] [Google Scholar]
- Boom S. P., Moons M. M., Russel F. G. Renal tubular transport of cimetidine in the isolated perfused kidney of the rat. Drug Metab Dispos. 1994 Jan-Feb;22(1):148–153. [PubMed] [Google Scholar]
- Brink H. M., Slegers J. F. Instantaneous measurement of glomerular filtration rate in the isolated perfused rat kidney. Pflugers Arch. 1979 Dec;383(1):71–73. doi: 10.1007/BF00584477. [DOI] [PubMed] [Google Scholar]
- Bäck S. E., Masson P., Nilsson-Ehle P. A simple chemical method for the quantification of the contrast agent iohexol, applicable to glomerular filtration rate measurements. Scand J Clin Lab Invest. 1988 Dec;48(8):825–829. doi: 10.3109/00365518809088767. [DOI] [PubMed] [Google Scholar]
- Choi T. L., Kim Y. K. Effect of probenecid on tetraethyl ammonium (TEA) transport across basolateral membrane of rabbit proximal tubule. Korean J Intern Med. 1992 Jul;7(2):130–136. doi: 10.3904/kjim.1992.7.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox P. G., Moons M. M., Slegers J. F., Russel F. G., van Ginneken C. A. Isolated perfused rat kidney as a tool in the investigation of renal handling and effects of nonsteroidal antiinflammatory drugs. J Pharmacol Methods. 1990 Sep;24(2):89–103. doi: 10.1016/0160-5402(90)90020-l. [DOI] [PubMed] [Google Scholar]
- Cox P. G., Moons W. M., Russel F. G., van Ginneken C. A. Renal handling and effects of S(+)-ibuprofen and R(-)-ibuprofen in the rat isolated perfused kidney. Br J Pharmacol. 1991 Jun;103(2):1542–1546. doi: 10.1111/j.1476-5381.1991.tb09824.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frennby B., Sterner G., Almén T., Hagstam K. E., Jacobsson L. Determination of low glomerular filtration rate using iohexol clearance. Invest Radiol. 1994 Jun;29 (Suppl 2):S234–S235. doi: 10.1097/00004424-199406001-00079. [DOI] [PubMed] [Google Scholar]
- HEYROVSKY A. A new method for the determination of inulin in plasma and urine. Clin Chim Acta. 1956 Sep-Oct;1(5):470–474. doi: 10.1016/0009-8981(56)90020-1. [DOI] [PubMed] [Google Scholar]
- Heyman S. N., Brezis M., Epstein F. H., Spokes K., Silva P., Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991 Oct;40(4):632–642. doi: 10.1038/ki.1991.255. [DOI] [PubMed] [Google Scholar]
- Heyman S. N., Brezis M., Reubinoff C. A., Greenfeld Z., Lechene C., Epstein F. H., Rosen S. Acute renal failure with selective medullary injury in the rat. J Clin Invest. 1988 Aug;82(2):401–412. doi: 10.1172/JCI113612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humes H. D., Hunt D. A., White M. D. Direct toxic effect of the radiocontrast agent diatrizoate on renal proximal tubule cells. Am J Physiol. 1987 Feb;252(2 Pt 2):F246–F255. doi: 10.1152/ajprenal.1987.252.2.F246. [DOI] [PubMed] [Google Scholar]
- Kaloyanides G. J. Drug-phospholipid interactions: role in aminoglycoside nephrotoxicity. Ren Fail. 1992;14(3):351–357. doi: 10.3109/08860229209106642. [DOI] [PubMed] [Google Scholar]
- Kippen I., Hirayama B., Klinenberg J. R., Wright E. M. Transport of p-aminohippuric acid, uric acid and glucose in highly purified rabbit renal brush border membranes. Biochim Biophys Acta. 1979 Sep 4;556(1):161–174. doi: 10.1016/0005-2736(79)90428-0. [DOI] [PubMed] [Google Scholar]
- Lindblad H. G., Berg U. B. Comparative evaluation of iohexol and inulin clearance for glomerular filtration rate determinations. Acta Paediatr. 1994 Apr;83(4):418–422. doi: 10.1111/j.1651-2227.1994.tb18133.x. [DOI] [PubMed] [Google Scholar]
- Masereeuw R., van den Bergh E. J., Bindels R. J., Russel F. G. Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation. J Pharmacol Exp Ther. 1994 Jun;269(3):1261–1267. [PubMed] [Google Scholar]
- Morris T. W., Fischer H. W. The pharmacology of intravascular radiocontrast media. Annu Rev Pharmacol Toxicol. 1986;26:143–160. doi: 10.1146/annurev.pa.26.040186.001043. [DOI] [PubMed] [Google Scholar]
- Mudge G. H., Berndt W. O., Saunders A., Beattie B. Renal transport of diatrizoate in the rabbit, dog, and rat. Nephron. 1971;8(2):156–172. doi: 10.1159/000179916. [DOI] [PubMed] [Google Scholar]
- Nordby A., Tvedt K. E., Halgunset J., Haugen O. A. Intracellular penetration and accumulation of radiographic contrast media in the rat kidney. Scanning Microsc. 1990 Sep;4(3):651–666. [PubMed] [Google Scholar]
- Porter G. A. Contrast-associated nephropathy: presentation, pathophysiology and management. Miner Electrolyte Metab. 1994;20(4):232–243. [PubMed] [Google Scholar]
- Sovak M. Contrast media: a journey almost sentimental. Invest Radiol. 1994 May;29 (Suppl 1):S4–14. doi: 10.1097/00004424-199405001-00003. [DOI] [PubMed] [Google Scholar]
- Tervahartiala P., Kivisaari L., Kivisaari R., Virtanen I., Standertskjöld-Nordenstam C. G. Contrast media-induced renal tubular vacuolization. A light and electron microscopic study on rat kidneys. Invest Radiol. 1991 Oct;26(10):882–887. doi: 10.1097/00004424-199110000-00009. [DOI] [PubMed] [Google Scholar]
- Thomsen H. S., Dorph S., Mygind T., Sovak M., Nielsen H., Rygaard H., Larsen S., Skaarup P., Hemmingsen L., Holm J. Intravenous injection of ioxilan, iohexol and diatrizoate. Effects on urine profiles in the rat. Acta Radiol. 1988 Jan-Feb;29(1):131–136. [PubMed] [Google Scholar]
- Williams P. D., Hottendorf G. H., Bennett D. B. Inhibition of renal membrane binding and nephrotoxicity of aminoglycosides. J Pharmacol Exp Ther. 1986 Jun;237(3):919–925. [PubMed] [Google Scholar]