Abstract
1. The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Natural and synthetic antioxidants have been shown to protect LDL from oxidation and to inhibit atherosclerosis development in animals. Synthetic antioxidants are currently being tested, by they are not necessarily safe for human use. 2. We have previously reported that dipyridamole, currently used in clinical practice, is a potent scavenger of free radicals. Thus, we tested whether dipyridamole could affect LDL oxidation at chemical and cellular level. 3. Chemically induced LDL oxidation was made by Cu(II), Cu(II) plus hydrogen peroxide or peroxyl radicals generated by thermolysis of 2,2'-azo-bis(2-amidino propane). Dipyridamole, (1-10 microM), inhibited LDL oxidation as monitored by diene formation, evolution of hydroperoxides and thiobarbituric acid reactive substances, apoprotein modification and by the fluorescence of cis-parinaric acid. 4. The physiological relevance of the antioxidant activity was validated by experiments at the cellular level where dipyridamole inhibited endothelial cell-mediated LDL oxidation, their degradation by monocytes, and cytotoxicity. 5. In comparison with ascorbic acid, alpha-tocopherol and probucol, dipyridamole was the more efficient antioxidant with the following order of activity: dipyridamole > probucol > ascorbic acid > alpha-tocopherol. The present study shows that dipyridamole inhibits oxidation of LDL at pharmacologically relevant concentrations. The inhibition of LDL oxidation is unequivocally confirmed by use of three different methods of chemical oxidation, by several methods of oxidation monitoring, and the pharmacological relevance is demonstrated by the superiority of dipyridamole over the naturally occurring antioxidants, ascorbic acid and alpha-tocopherol and the synthetic antioxidant probucol.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Autio I., Jaakkola O., Solakivi T., Nikkari T. Oxidized low-density lipoprotein is chemotactic for arterial smooth muscle cells in culture. FEBS Lett. 1990 Dec 17;277(1-2):247–249. doi: 10.1016/0014-5793(90)80857-f. [DOI] [PubMed] [Google Scholar]
- Belcher J. D., Balla J., Balla G., Jacobs D. R., Jr, Gross M., Jacob H. S., Vercellotti G. M. Vitamin E, LDL, and endothelium. Brief oral vitamin supplementation prevents oxidized LDL-mediated vascular injury in vitro. Arterioscler Thromb. 1993 Dec;13(12):1779–1789. doi: 10.1161/01.atv.13.12.1779. [DOI] [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Boyd H. C., Gown A. M., Wolfbauer G., Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol. 1989 Nov;135(5):815–825. [PMC free article] [PubMed] [Google Scholar]
- Bull A. W., Marnett L. J. Determination of malondialdehyde by ion-pairing high-performance liquid chromatography. Anal Biochem. 1985 Aug 15;149(1):284–290. doi: 10.1016/0003-2697(85)90506-8. [DOI] [PubMed] [Google Scholar]
- Carew T. E., Schwenke D. C., Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7725–7729. doi: 10.1073/pnas.84.21.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cathcart M. K., McNally A. K., Morel D. W., Chisolm G. M., 3rd Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin. J Immunol. 1989 Mar 15;142(6):1963–1969. [PubMed] [Google Scholar]
- Cominacini L., Garbin U., Davoli A., Micciolo R., Bosello O., Gaviraghi G., Scuro L. A., Pastorino A. M. A simple test for predisposition to LDL oxidation based on the fluorescence development during copper-catalyzed oxidative modification. J Lipid Res. 1991 Feb;32(2):349–358. [PubMed] [Google Scholar]
- Cominacini L., Garbin U., Pastorino A. M., Davoli A., Campagnola M., De Santis A., Pasini C., Faccini G. B., Trevisan M. T., Bertozzo L. Predisposition to LDL oxidation in patients with and without angiographically established coronary artery disease. Atherosclerosis. 1993 Feb;99(1):63–70. doi: 10.1016/0021-9150(93)90051-u. [DOI] [PubMed] [Google Scholar]
- Cramer G. L., Miller J. F., Jr, Pendleton R. B., Lands W. E. Iodometric measurement of lipid hydroperoxides in human plasma. Anal Biochem. 1991 Mar 2;193(2):204–211. doi: 10.1016/0003-2697(91)90010-q. [DOI] [PubMed] [Google Scholar]
- Dieber-Rotheneder M., Puhl H., Waeg G., Striegl G., Esterbauer H. Effect of oral supplementation with D-alpha-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res. 1991 Aug;32(8):1325–1332. [PubMed] [Google Scholar]
- Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
- FitzGerald G. A. Dipyridamole. N Engl J Med. 1987 May 14;316(20):1247–1257. doi: 10.1056/NEJM198705143162005. [DOI] [PubMed] [Google Scholar]
- Freyschuss A., Stiko-Rahm A., Swedenborg J., Henriksson P., Björkhem I., Berglund L., Nilsson J. Antioxidant treatment inhibits the development of intimal thickening after balloon injury of the aorta in hypercholesterolemic rabbits. J Clin Invest. 1993 Apr;91(4):1282–1288. doi: 10.1172/JCI116326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
- Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
- Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988 Jul 8;241(4862):215–218. doi: 10.1126/science.2455346. [DOI] [PubMed] [Google Scholar]
- Harats D., Ben-Naim M., Dabach Y., Hollander G., Havivi E., Stein O., Stein Y. Effect of vitamin C and E supplementation on susceptibility of plasma lipoproteins to peroxidation induced by acute smoking. Atherosclerosis. 1990 Nov;85(1):47–54. doi: 10.1016/0021-9150(90)90181-h. [DOI] [PubMed] [Google Scholar]
- Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
- Hess H., Mietaschk A., Deichsel G. Drug-induced inhibition of platelet function delays progression of peripheral occlusive arterial disease. A prospective double-blind arteriographically controlled trial. Lancet. 1985 Feb 23;1(8426):415–419. doi: 10.1016/s0140-6736(85)91144-4. [DOI] [PubMed] [Google Scholar]
- Iuliano L., Pedersen J. Z., Praticò D., Rotilio G., Violi F. Role of hydroxyl radicals in the activation of human platelets. Eur J Biochem. 1994 Apr 15;221(2):695–704. doi: 10.1111/j.1432-1033.1994.tb18782.x. [DOI] [PubMed] [Google Scholar]
- Iuliano L., Pedersen J. Z., Rotilio G., Ferro D., Violi F. A potent chain-breaking antioxidant activity of the cardiovascular drug dipyridamole. Free Radic Biol Med. 1995 Feb;18(2):239–247. doi: 10.1016/0891-5849(94)e0123-z. [DOI] [PubMed] [Google Scholar]
- Iuliano L., Praticò D., Ghiselli A., Bonavita M. S., Violi F. Reaction of dipyridamole with the hydroxyl radical. Lipids. 1992 May;27(5):349–353. doi: 10.1007/BF02536149. [DOI] [PubMed] [Google Scholar]
- Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janero D. R., Burghardt B., Lopez R., Cardell M. Influence of cardioprotective cyclooxygenase and lipoxygenase inhibitors on peroxidative injury to myocardial-membrane phospholipid. Biochem Pharmacol. 1989 Dec 15;38(24):4381–4387. doi: 10.1016/0006-2952(89)90646-1. [DOI] [PubMed] [Google Scholar]
- Jialal I., Grundy S. M. Effect of dietary supplementation with alpha-tocopherol on the oxidative modification of low density lipoprotein. J Lipid Res. 1992 Jun;33(6):899–906. [PubMed] [Google Scholar]
- Kuzuya M., Kuzuya F. Probucol as an antioxidant and antiatherogenic drug. Free Radic Biol Med. 1993 Jan;14(1):67–77. doi: 10.1016/0891-5849(93)90510-2. [DOI] [PubMed] [Google Scholar]
- Kuzuya M., Naito M., Funaki C., Hayashi T., Asai K., Kuzuya F. Lipid peroxide and transition metals are required for the toxicity of oxidized low density lipoprotein to cultured endothelial cells. Biochim Biophys Acta. 1991 Feb 22;1096(2):155–161. doi: 10.1016/0925-4439(91)90054-d. [DOI] [PubMed] [Google Scholar]
- Laranjinha J. A., Almeida L. M., Madeira V. M. Lipid peroxidation and its inhibition in low density lipoproteins: quenching of cis-parinaric acid fluorescence. Arch Biochem Biophys. 1992 Aug 15;297(1):147–154. doi: 10.1016/0003-9861(92)90653-e. [DOI] [PubMed] [Google Scholar]
- McLean L. R., Hagaman K. A. Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper. Biochemistry. 1989 Jan 10;28(1):321–327. doi: 10.1021/bi00427a043. [DOI] [PubMed] [Google Scholar]
- Morisaki N., Stitts J. M., Bartels-Tomei L., Milo G. E., Panganamala R. V., Cornwell D. G. Dipyridamole: an antioxidant that promotes the proliferation of aorta smooth muscle cells. Artery. 1982;11(2):88–107. [PubMed] [Google Scholar]
- Palinski W., Rosenfeld M. E., Ylä-Herttuala S., Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1372–1376. doi: 10.1073/pnas.86.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Princen H. M., van Poppel G., Vogelezang C., Buytenhek R., Kok F. J. Supplementation with vitamin E but not beta-carotene in vivo protects low density lipoprotein from lipid peroxidation in vitro. Effect of cigarette smoking. Arterioscler Thromb. 1992 May;12(5):554–562. doi: 10.1161/01.atv.12.5.554. [DOI] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Fong L. G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998. doi: 10.1073/pnas.84.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaven P. D., Khouw A., Beltz W. F., Parthasarathy S., Witztum J. L. Effect of dietary antioxidant combinations in humans. Protection of LDL by vitamin E but not by beta-carotene. Arterioscler Thromb. 1993 Apr;13(4):590–600. doi: 10.1161/01.atv.13.4.590. [DOI] [PubMed] [Google Scholar]
- Regnström J., Nilsson J., Tornvall P., Landou C., Hamsten A. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet. 1992 May 16;339(8803):1183–1186. doi: 10.1016/0140-6736(92)91129-v. [DOI] [PubMed] [Google Scholar]
- Rice-Evans C. A., Diplock A. T. Current status of antioxidant therapy. Free Radic Biol Med. 1993 Jul;15(1):77–96. doi: 10.1016/0891-5849(93)90127-g. [DOI] [PubMed] [Google Scholar]
- Salonen J. T., Ylä-Herttuala S., Yamamoto R., Butler S., Korpela H., Salonen R., Nyyssönen K., Palinski W., Witztum J. L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992 Apr 11;339(8798):883–887. doi: 10.1016/0140-6736(92)90926-t. [DOI] [PubMed] [Google Scholar]
- Selley M. L., Czeti A. L., McGuiness J. A., Ardlie N. G. Dipyridamole inhibits the oxidative modification of low density lipoprotein. Atherosclerosis. 1994 Nov;111(1):91–97. doi: 10.1016/0021-9150(94)90194-5. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Sparrow C. P., Doebber T. W., Olszewski J., Wu M. S., Ventre J., Stevens K. A., Chao Y. S. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N'-diphenyl-phenylenediamine. J Clin Invest. 1992 Jun;89(6):1885–1891. doi: 10.1172/JCI115793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P., Lougheed M., Kwan W. C., Dirks M. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J Biol Chem. 1989 Sep 15;264(26):15216–15223. [PubMed] [Google Scholar]
- Tabak M., Borisevitch I. E. Interaction of dipyridamole with micelles of lysophosphatidylcholine and with bovine serum albumin: fluorescence studies. Biochim Biophys Acta. 1992 Jun 12;1116(3):241–249. doi: 10.1016/0304-4165(92)90017-o. [DOI] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Cruz J. P., Carrasco T., Ortega G., Sanchez de la Cuesta F. Inhibition of ferrous-induced lipid peroxidation by pyrimido-pyrimidine derivatives in human liver membranes. Lipids. 1992 Mar;27(3):192–194. doi: 10.1007/BF02536177. [DOI] [PubMed] [Google Scholar]