Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Dec;119(7):1470–1476. doi: 10.1111/j.1476-5381.1996.tb16060.x

Vasorelaxant and antiaggregatory properties of the endothelium: a comparative study in normocholesterolaemic and hereditary and dietary hypercholesterolaemic rabbits.

C Greenlees 1, C L Wainwright 1, R M Wadsworth 1
PMCID: PMC1915835  PMID: 8968557

Abstract

1. A comparison of the effects of dietary and genetically-induced hypercholesterolaemia on the vasodilator and antiaggregatory capacity of the endothelium was made in rabbit isolated subclavian artery rings. 2. Dietary-induced hypercholesterolaemia in NZW rabbits decreased the maximum relaxation to carbachol (0.01-10 microM) and calcimycin (0.01-0.1 microM) in vessel rings precontracted with 5-hydroxytryptamine (5-HT), 0.1 microM), when compared to responses observed in rings obtained from control normocholesterolaemic NZW rabbits. The relaxant responses to SIN-1 (3-(4-morpholinyl)-sydnonimine hydrochloride) were attenuated but were not significantly different from controls. In Froxfield genetically hypercholesterolaemic (FHH) rabbits, the maximum relaxations to carbachol, calcimycin and SIN-1 were all reduced significantly. 3. Neither genetic nor dietary-induced hypercholesterolaemia modified the contractile responses of vessel rings to either KCl (10-100 mM) or 5-HT (0.01-10 microM). 4. Endothelium-dependent inhibition of collagen-induced platelet aggregation in whole blood was demonstrated by stimulation of a vessel ring, incorporated into the blood sample, with carbachol (10 microM, final blood concentration). This effect was inhibited by NG-nitro-L-arginine (L-NOARG, 100 microM). SIN-1 (10 microM, final blood concentration) also decreased whole blood platelet aggregation, but only in the presence of an unstimulated vessel ring, and this was unaffected by L-NOARG. Superoxide dismutase (150 u ml-1) did not influence the inhibition of aggregation by either a carbachol-stimulated vessel ring or by SIN-1. 5. Carbachol-stimulated artery rings from FHH rabbits inhibited platelet aggregation to a similar extent to that seen with rings from control normocholesterolaemic rabbits. Rings from hypercholesterolaemic NZW rabbits, however, did not significantly inhibit platelet aggregation when stimulated with carbachol. SIN-1 inhibited platelet aggregation in the presence of rings from either group of hypercholesterolaemic rabbits. 6. Hypercholesterolaemia induced by dietary modification induces changes in endothelial function which are characteristically different from those seen in genetically hypercholesterolaemic rabbits. It appears that dietary-induced hypercholesterolaemia primarily decreases NO release from the endothelium, while in genetically-induced hypercholesterolaemic vessel rings NO is released but there is a decreased responsiveness of the vascular smooth muscle cells to NO. This may reflect differences in the age and severity of the atherosclerotic lesions in the two groups of rabbits.

Full text

PDF
1470

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviram M., Brook J. G. Platelet activation by plasma lipoproteins. Prog Cardiovasc Dis. 1987 Jul-Aug;30(1):61–72. doi: 10.1016/0033-0620(87)90011-9. [DOI] [PubMed] [Google Scholar]
  2. Azuma H., Ishikawa M., Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol. 1986 Jun;88(2):411–415. doi: 10.1111/j.1476-5381.1986.tb10218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett P. A., Butler K. D. Shortening of platelet survival by induced hypercholesterolaemia in rabbits and its prolongation by anagrelide. Thromb Haemost. 1983 Oct 31;50(3):656–659. [PubMed] [Google Scholar]
  4. Bhardwaj R., Page C. P., May G. R., Moore P. K. Endothelium-derived relaxing factor inhibits platelet aggregation in human whole blood in vitro and in the rat in vivo. Eur J Pharmacol. 1988 Nov 15;157(1):83–91. doi: 10.1016/0014-2999(88)90474-8. [DOI] [PubMed] [Google Scholar]
  5. Bohn H., Schönafinger K. Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S6–12. [PubMed] [Google Scholar]
  6. Chinellato A., Banchieri N., Pandolfo L., Ragazzi E., Froldi G., Norido F., Caparrotta L., Fassina G. Aortic response to relaxing agents in Watanabe heritable hyperlipidemic (WHHL) rabbits of different age. Atherosclerosis. 1991 Aug;89(2-3):223–230. doi: 10.1016/0021-9150(91)90063-9. [DOI] [PubMed] [Google Scholar]
  7. Cohen R. A., Zitnay K. M., Haudenschild C. C., Cunningham L. D. Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res. 1988 Nov;63(5):903–910. doi: 10.1161/01.res.63.5.903. [DOI] [PubMed] [Google Scholar]
  8. Cooke J. P., Andon N. A., Girerd X. J., Hirsch A. T., Creager M. A. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation. 1991 Mar;83(3):1057–1062. doi: 10.1161/01.cir.83.3.1057. [DOI] [PubMed] [Google Scholar]
  9. Dalal K. B., Ebbe S., Mazoyer E., Carpenter D., Yee T. Biochemical and functional abnormalities in hypercholesterolemic rabbit platelets. Lipids. 1990 Feb;25(2):86–92. doi: 10.1007/BF02562210. [DOI] [PubMed] [Google Scholar]
  10. Flavahan N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation. 1992 May;85(5):1927–1938. doi: 10.1161/01.cir.85.5.1927. [DOI] [PubMed] [Google Scholar]
  11. Furlong B., Henderson A. H., Lewis M. J., Smith J. A. Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol. 1987 Apr;90(4):687–692. doi: 10.1111/j.1476-5381.1987.tb11221.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galle J., Bassenge E., Busse R. Oxidized low density lipoproteins potentiate vasoconstrictions to various agonists by direct interaction with vascular smooth muscle. Circ Res. 1990 May;66(5):1287–1293. doi: 10.1161/01.res.66.5.1287. [DOI] [PubMed] [Google Scholar]
  13. Hadoke P. W., Wadsworth R. M., Wainwright C. L. Characterization of the responses of isolated rings of rabbit left carotid artery. A potential protocol for the assessment of pathologically induced functional changes. J Pharmacol Toxicol Methods. 1993 Aug;29(4):195–202. doi: 10.1016/1056-8719(93)90025-a. [DOI] [PubMed] [Google Scholar]
  14. Hadoke P., Wainwright C. L., Wadsworth R. M., Butler K., Giddings M. J. Characterization of the morphological and functional alterations in rabbit subclavian artery subjected to balloon angioplasty. Coron Artery Dis. 1995 May;6(5):403–415. doi: 10.1097/00019501-199505000-00008. [DOI] [PubMed] [Google Scholar]
  15. Jayakody L., Senaratne M., Thomson A., Kappagoda T. Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res. 1987 Feb;60(2):251–264. doi: 10.1161/01.res.60.2.251. [DOI] [PubMed] [Google Scholar]
  16. Joseph M., Capron A., Tsicopoulos A., Ameisen J. C., Martinot J. B., Tonnel A. B. Platelet activation by IgE and aspirin. Agents Actions Suppl. 1987;21:169–177. doi: 10.1007/978-3-0348-7451-9_15. [DOI] [PubMed] [Google Scholar]
  17. Kolodgie F. D., Virmani R., Rice H. E., Mergner W. J. Vascular reactivity during the progression of atherosclerotic plaque. A study in Watanabe heritable hyperlipidemic rabbits. Circ Res. 1990 Apr;66(4):1112–1126. doi: 10.1161/01.res.66.4.1112. [DOI] [PubMed] [Google Scholar]
  18. Löbel P., Schrör K. Stimulation of vascular prostacyclin and inhibition of platelet function by oral defibrotide in cholesterol-fed rabbits. Atherosclerosis. 1989 Nov;80(1):69–79. doi: 10.1016/0021-9150(89)90070-1. [DOI] [PubMed] [Google Scholar]
  19. Marcus A. J. Pathways of oxygen utilization by stimulated platelets and leukocytes. Semin Hematol. 1979 Jul;16(3):188–195. [PubMed] [Google Scholar]
  20. Minor R. L., Jr, Myers P. R., Guerra R., Jr, Bates J. N., Harrison D. G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990 Dec;86(6):2109–2116. doi: 10.1172/JCI114949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moncada S., Radomski M. W., Palmer R. M. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol. 1988 Jul 1;37(13):2495–2501. doi: 10.1016/0006-2952(88)90236-5. [DOI] [PubMed] [Google Scholar]
  22. Mügge A., Brandes R. P., Böger R. H., Dwenger A., Bode-Böger S., Kienke S., Frölich J. C., Lichtlen P. R. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1994 Dec;24(6):994–998. doi: 10.1097/00005344-199424060-00019. [DOI] [PubMed] [Google Scholar]
  23. Osborne J. A., Siegman M. J., Sedar A. W., Mooers S. U., Lefer A. M. Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits. Am J Physiol. 1989 Mar;256(3 Pt 1):C591–C597. doi: 10.1152/ajpcell.1989.256.3.C591. [DOI] [PubMed] [Google Scholar]
  24. Radomski M. W., Palmer R. M., Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5193–5197. doi: 10.1073/pnas.87.13.5193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Radomski M. W., Palmer R. M., Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987 Sep;92(1):181–187. doi: 10.1111/j.1476-5381.1987.tb11310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ragazzi E., Chinellato A., De Biasi M., Pandolfo L., Prosdocimi M., Norido F., Caparrotta L., Fassina G. Endothelium-dependent relaxation, cholesterol content and high energy metabolite balance in Watanabe hyperlipemic rabbit aorta. Atherosclerosis. 1989 Dec;80(2):125–134. doi: 10.1016/0021-9150(89)90020-8. [DOI] [PubMed] [Google Scholar]
  27. Ragazzi E., Froldi G., Pandolfo L., Chinellato A., De Biasi M., Prosdocimi M., Caparrotta L., Fassina G. Segmental impairment of endothelium-mediated relaxation in thoracic aortas from atherosclerotic rabbits. Comparison to cholesterol infiltration and energy metabolism. Artery. 1989;16(6):327–345. [PubMed] [Google Scholar]
  28. Rosenfeld M. E., Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990 Sep-Oct;10(5):680–687. doi: 10.1161/01.atv.10.5.680. [DOI] [PubMed] [Google Scholar]
  29. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  30. Salvemini D., Radziszewski W., Korbut R., Vane J. The use of oxyhaemoglobin to explore the events underlying inhibition of platelet aggregation induced by NO or NO-donors. Br J Pharmacol. 1990 Dec;101(4):991–995. doi: 10.1111/j.1476-5381.1990.tb14194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Salvemini D., de Nucci G., Sneddon J. M., Vane J. R. Superoxide anions enhance platelet adhesion and aggregation. Br J Pharmacol. 1989 Aug;97(4):1145–1150. doi: 10.1111/j.1476-5381.1989.tb12572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shimokawa H., Flavahan N. A., Vanhoutte P. M. Loss of endothelial pertussis toxin-sensitive G protein function in atherosclerotic porcine coronary arteries. Circulation. 1991 Feb;83(2):652–660. doi: 10.1161/01.cir.83.2.652. [DOI] [PubMed] [Google Scholar]
  33. Siedel J., Hägele E. O., Ziegenhorn J., Wahlefeld A. W. Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem. 1983 Jun;29(6):1075–1080. [PubMed] [Google Scholar]
  34. Sneddon J. M., Vane J. R. Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2800–2804. doi: 10.1073/pnas.85.8.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stamler J., Mendelsohn M. E., Amarante P., Smick D., Andon N., Davies P. F., Cooke J. P., Loscalzo J. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res. 1989 Sep;65(3):789–795. doi: 10.1161/01.res.65.3.789. [DOI] [PubMed] [Google Scholar]
  36. Tagawa H., Tomoike H., Nakamura M. Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res. 1991 Feb;68(2):330–337. doi: 10.1161/01.res.68.2.330. [DOI] [PubMed] [Google Scholar]
  37. Vanhoutte P. M. Hypercholesterolaemia, atherosclerosis and release of endothelium-derived relaxing factor by aggregating platelets. Eur Heart J. 1991 Nov;12 (Suppl E):25–32. doi: 10.1093/eurheartj/12.suppl_e.25. [DOI] [PubMed] [Google Scholar]
  38. Verbeuren T. J., Jordaens F. H., Van Hove C. E., Van Hoydonck A. E., Herman A. G. Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol. 1990 Nov 27;191(2):173–184. doi: 10.1016/0014-2999(90)94145-n. [DOI] [PubMed] [Google Scholar]
  39. Verbeuren T. J., Jordaens F. H., Zonnekeyn L. L., Van Hove C. E., Coene M. C., Herman A. G. Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 1986 Apr;58(4):552–564. doi: 10.1161/01.res.58.4.552. [DOI] [PubMed] [Google Scholar]
  40. Zeiher A. M., Drexler H., Wollschläger H., Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991 Feb;83(2):391–401. doi: 10.1161/01.cir.83.2.391. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES