Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Sep;119(2):432–438. doi: 10.1111/j.1476-5381.1996.tb16004.x

Antioxidant protection of NO-induced relaxations of the mouse anococcygeus against inhibition by superoxide anions, hydroquinone and carboxy-PTIO.

E Lilley 1, A Gibson 1
PMCID: PMC1915868  PMID: 8886431

Abstract

1. The potential protective effect of several antioxidants [Cu/Zn superoxide dismutase (Cu/Zn SOD), ascorbate, reduced glutathione (GSH), and alpha-tocopherol (alpha-TOC)] on relaxations of the mouse anococcygeus muscle to nitric oxide (NO; 15 microM) and, where appropriate, nitrergic field stimulation (10 Hz; 10 s trains) was investigated. 2. The superoxide anion generating drug duroquinone (100 microM) reduced relaxations to exogenous NO by 54 +/- 6%; this inhibition was partially reversed by Cu/Zn SOD (250 u ml-1), and by ascorbate (500 microM). Following inhibition of endogenous Cu/Zn SOD activity with diethyldithiocarbamate (DETCA), duroquinone (50 microM) also reduced relaxations to nitrergic field stimulation (by 53 +/- 6%) and this effect was again reversed by Cu/Zn SOD and by ascorbate. Neither GSH (500 microM) nor alpha-TOC (400 microM) afforded any protection against duroquinone. 3. Xanthine (20 mu ml-1); xanthine oxidase (100 microM) inhibited NO-induced relaxations by 73 +/- 14%, but had no effect on those to nitrergic field stimulation, even after DETCA treatment. The inhibition of exogenous NO was reduced by Cu/Zn SOD (250 u ml-1) and ascorbate (400 microM), but was unaffected by GSH or alpha-TOC (both 400 microM). 4. Hydroquinone (100 microM) also inhibited relaxations to NO (by 52 +/- 10%), but not nitrergic stimulation. In this case, however, the inhibition was reversed by GSH (5-100 microM) and ascorbate (100-400 microM), although Cu/Zn SOD and alpha-TOC were ineffective. 5. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO, 50 microM) inhibited NO-induced relaxations by 50 +/- 4%, but had no effect on nitrergic responses; the inhibition was reduced by ascorbate (2-200 microM) and alpha-TOC (10-200 microM), but not by Cu/Zn SOD or GSH. 6. Hydroxocobalamin (5-100 microM) inhibited, equally, relaxations to both NO (-logIC40 3.14 +/- 0.33) and nitrergic stimulation (-logIC40 3.17 +/- 0.22). 7. Thus, a number of physiological antioxidants protected NO from superoxide anions, and from direct NO-scavengers. The possibility that the presence of these antioxidants within nitrergically-innervated tissues might explain the lack of effect of the NO inhibitors on nerve-induced relaxation, without the need to invoke a transmitter other than free radical NO, is discussed.

Full text

PDF
432

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Yoshida M., Miyamoto Y., Sato K., Kohno M., Sasamoto K., Miyazaki K., Ueda S., Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry. 1993 Jan 26;32(3):827–832. doi: 10.1021/bi00054a013. [DOI] [PubMed] [Google Scholar]
  2. Boersma M. G., Balvers W. G., Boeren S., Vervoort J., Rietjens I. M. NADPH-cytochrome reductase catalysed redox cycling of 1,4-benzoquinone; hampered at physiological conditions, initiated at increased pH values. Biochem Pharmacol. 1994 Jun 1;47(11):1949–1955. doi: 10.1016/0006-2952(94)90068-x. [DOI] [PubMed] [Google Scholar]
  3. Gibson A., Brave S. R., McFadzean I., Tucker J. F., Wayman C. The nitrergic transmitter of the anococcygeus--NO or not? Arch Int Pharmacodyn Ther. 1995 Jan-Feb;329(1):39–51. [PubMed] [Google Scholar]
  4. Gibson A., Mirzazadeh S. N-methylhydroxylamine inhibits and M&B 22948 potentiates relaxations of the mouse anococcygeus to non-adrenergic, non-cholinergic field stimulation and to nitrovasodilator drugs. Br J Pharmacol. 1989 Mar;96(3):637–644. doi: 10.1111/j.1476-5381.1989.tb11863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gillespie J. S., Sheng H. The effects of pyrogallol and hydroquinone on the response to NANC nerve stimulation in the rat anococcygeus and the bovine retractor penis muscles. Br J Pharmacol. 1990 Jan;99(1):194–196. doi: 10.1111/j.1476-5381.1990.tb14677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hobbs A. J., Tucker J. F., Gibson A. Differentiation by hydroquinone of relaxations induced by exogenous and endogenous nitrates in non-vascular smooth muscle: role of superoxide anions. Br J Pharmacol. 1991 Nov;104(3):645–650. doi: 10.1111/j.1476-5381.1991.tb12483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jain A., Mårtensson J., Mehta T., Krauss A. N., Auld P. A., Meister A. Ascorbic acid prevents oxidative stress in glutathione-deficient mice: effects on lung type 2 cell lamellar bodies, lung surfactant, and skeletal muscle. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5093–5097. doi: 10.1073/pnas.89.11.5093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lilley E., Gibson A. Inhibition of relaxations to nitrergic stimulation of the mouse anococcygeus by duroquinone. Br J Pharmacol. 1995 Dec;116(8):3231–3236. doi: 10.1111/j.1476-5381.1995.tb15129.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martin W., McAllister K. H., Paisley K. NANC neurotransmission in the bovine retractor penis muscle is blocked by superoxide anion following inhibition of superoxide dismutase with diethyldithiocarbamate. Neuropharmacology. 1994 Nov;33(11):1293–1301. doi: 10.1016/0028-3908(94)90029-9. [DOI] [PubMed] [Google Scholar]
  10. Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem. 1994 Apr 1;269(13):9397–9400. [PubMed] [Google Scholar]
  11. Miele M., Boutelle M. G., Fillenz M. The physiologically induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience. 1994 Sep;62(1):87–91. doi: 10.1016/0306-4522(94)90316-6. [DOI] [PubMed] [Google Scholar]
  12. Mårtensson J., Meister A. Glutathione deficiency increases hepatic ascorbic acid synthesis in adult mice. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11566–11568. doi: 10.1073/pnas.89.23.11566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paisley K., Martin W. Blockade of nitrergic transmission by hydroquinone, hydroxocobalamin and carboxy-PTIO in bovine retractor penis: role of superoxide anion. Br J Pharmacol. 1996 Apr;117(8):1633–1638. doi: 10.1111/j.1476-5381.1996.tb15333.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rajanayagam M. A., Li C. G., Rand M. J. Differential effects of hydroxocobalamin on NO-mediated relaxations in rat aorta and anococcygeus muscle. Br J Pharmacol. 1993 Jan;108(1):3–5. doi: 10.1111/j.1476-5381.1993.tb13429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rand M. J., Li C. G. Discrimination by the NO-trapping agent, carboxy-PTIO, between NO and the nitrergic transmitter but not between NO and EDRF. Br J Pharmacol. 1995 Sep;116(2):1906–1910. doi: 10.1111/j.1476-5381.1995.tb16681.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rand M. J., Li C. G. Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol. 1995;57:659–682. doi: 10.1146/annurev.ph.57.030195.003303. [DOI] [PubMed] [Google Scholar]
  17. Rand M. J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol. 1992 Mar;19(3):147–169. doi: 10.1111/j.1440-1681.1992.tb00433.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES