Abstract
1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey S. J., Hourani S. M. Effects of purines on the longitudinal muscle of the rat colon. Br J Pharmacol. 1992 Apr;105(4):885–892. doi: 10.1111/j.1476-5381.1992.tb09073.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cascalheira J. F., Sebastião A. M. Adenine nucleotide analogues, including gamma-phosphate-substituted analogues, are metabolised extracellularly in innervated frog sartorius muscle. Eur J Pharmacol. 1992 Nov 3;222(1):49–59. doi: 10.1016/0014-2999(92)90462-d. [DOI] [PubMed] [Google Scholar]
- Correia-de-Sá P., Ribeiro J. A. Adenosine uptake and deamination regulate tonic A2a receptor facilitation of evoked [3H]acetylcholine release from the rat motor nerve terminals. Neuroscience. 1996 Jul;73(1):85–92. doi: 10.1016/0306-4522(96)00028-0. [DOI] [PubMed] [Google Scholar]
- Correia-de-Sá P., Ribeiro J. A. Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. Eur J Pharmacol. 1994 Dec 27;271(2-3):349–355. doi: 10.1016/0014-2999(94)90793-5. [DOI] [PubMed] [Google Scholar]
- Correia-de-Sá P., Sebastião A. M., Ribeiro J. A. Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve ending of the rat. Br J Pharmacol. 1991 Jun;103(2):1614–1620. doi: 10.1111/j.1476-5381.1991.tb09836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunha R. A., Johansson B., van der Ploeg I., Sebastião A. M., Ribeiro J. A., Fredholm B. B. Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res. 1994 Jun 27;649(1-2):208–216. doi: 10.1016/0006-8993(94)91066-9. [DOI] [PubMed] [Google Scholar]
- Cunha R. A., Milusheva E., Vizi E. S., Ribeiro J. A., Sebastião A. M. Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus. J Neurochem. 1994 Jul;63(1):207–214. doi: 10.1046/j.1471-4159.1994.63010207.x. [DOI] [PubMed] [Google Scholar]
- Cunha R. A., Ribeiro J. A., Sebastião A. M. Purinergic modulation of the evoked release of [3H]acetylcholine from the hippocampus and cerebral cortex of the rat: role of the ectonucleotidases. Eur J Neurosci. 1994 Jan 1;6(1):33–42. doi: 10.1111/j.1460-9568.1994.tb00245.x. [DOI] [PubMed] [Google Scholar]
- Cunha R. A., Sebastião A. M. Adenosine and adenine nucleotides are independently released from both the nerve terminals and the muscle fibres upon electrical stimulation of the innervated skeletal muscle of the frog. Pflugers Arch. 1993 Sep;424(5-6):503–510. doi: 10.1007/BF00374914. [DOI] [PubMed] [Google Scholar]
- Cunha R. A., Sebastião A. M. Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog. Eur J Pharmacol. 1991 May 2;197(1):83–92. doi: 10.1016/0014-2999(91)90368-z. [DOI] [PubMed] [Google Scholar]
- Cunha R. A., Sebastião A. M., Ribeiro J. A. Ecto-5'-nucleotidase is associated with cholinergic nerve terminals in the hippocampus but not in the cerebral cortex of the rat. J Neurochem. 1992 Aug;59(2):657–666. doi: 10.1111/j.1471-4159.1992.tb09420.x. [DOI] [PubMed] [Google Scholar]
- Dunwiddie T. V., Diao L. Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther. 1994 Feb;268(2):537–545. [PubMed] [Google Scholar]
- Henderson J. F., Brox L., Zombor G., Hunting D., Lomax C. A. Specificity of adenosine deaminase inhibitors. Biochem Pharmacol. 1977 Nov 1;26(21):1967–1972. doi: 10.1016/0006-2952(77)90003-x. [DOI] [PubMed] [Google Scholar]
- James S., Richardson P. J. Production of adenosine from extracellular ATP at the striatal cholinergic synapse. J Neurochem. 1993 Jan;60(1):219–227. doi: 10.1111/j.1471-4159.1993.tb05841.x. [DOI] [PubMed] [Google Scholar]
- Lloyd H. G., Lindström K., Fredholm B. B. Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int. 1993 Aug;23(2):173–185. doi: 10.1016/0197-0186(93)90095-m. [DOI] [PubMed] [Google Scholar]
- Meghji P., Pearson J. D., Slakey L. L. Regulation of extracellular adenosine production by ectonucleotidases of adult rat ventricular myocytes. Am J Physiol. 1992 Jul;263(1 Pt 2):H40–H47. doi: 10.1152/ajpheart.1992.263.1.H40. [DOI] [PubMed] [Google Scholar]
- Mitchell J. B., Lupica C. R., Dunwiddie T. V. Activity-dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus. J Neurosci. 1993 Aug;13(8):3439–3447. doi: 10.1523/JNEUROSCI.13-08-03439.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naito Y., Lowenstein J. M. 5'-Nucleotidase from rat heart membranes. Inhibition by adenine nucleotides and related compounds. Biochem J. 1985 Mar 15;226(3):645–651. doi: 10.1042/bj2260645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedata F., Pazzagli M., Tilli S., Pepeu G. Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):447–453. doi: 10.1007/BF00169463. [DOI] [PubMed] [Google Scholar]
- Pirotton S., Boeynaems J. M. Evidence that ATP, ADP and AMP are not ligands of the striatal adenosine A2A receptors. Eur J Pharmacol. 1993 Sep 7;241(1):55–61. doi: 10.1016/0014-2999(93)90932-8. [DOI] [PubMed] [Google Scholar]
- Redman R. S., Silinsky E. M. ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J Physiol. 1994 May 15;477(Pt 1):117–127. doi: 10.1113/jphysiol.1994.sp020176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribeiro J. A., Sebastião A. M. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol. 1987 Mar;384:571–585. doi: 10.1113/jphysiol.1987.sp016470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson P. J., Brown S. J., Bailyes E. M., Luzio J. P. Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature. 1987 May 21;327(6119):232–234. doi: 10.1038/327232a0. [DOI] [PubMed] [Google Scholar]
- Sebastião A. M., Ribeiro J. A. Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci Lett. 1992 Apr 13;138(1):41–44. doi: 10.1016/0304-3940(92)90467-l. [DOI] [PubMed] [Google Scholar]
- Sebastião A. M., Stone T. W., Ribeiro J. A. The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: antagonism by 1,3,8-substituted xanthines. Br J Pharmacol. 1990 Oct;101(2):453–459. doi: 10.1111/j.1476-5381.1990.tb12729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. O. Sources of adenosine released during neuromuscular transmission in the rat. J Physiol. 1991 Jan;432:343–354. doi: 10.1113/jphysiol.1991.sp018388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson T. H., Drazba J. A., Rivkees S. A. Adenosine A1 receptors are located predominantly on axons in the rat hippocampal formation. J Comp Neurol. 1995 Dec 25;363(4):517–531. doi: 10.1002/cne.903630402. [DOI] [PubMed] [Google Scholar]
- Terrian D. M., Hernandez P. G., Rea M. A., Peters R. I. ATP release, adenosine formation, and modulation of dynorphin and glutamic acid release by adenosine analogues in rat hippocampal mossy fiber synaptosomes. J Neurochem. 1989 Nov;53(5):1390–1399. doi: 10.1111/j.1471-4159.1989.tb08529.x. [DOI] [PubMed] [Google Scholar]
- Tetzlaff W., Schubert P., Kreutzberg G. W. Synaptic and extrasynaptic localization of adenosine binding sites in the rat hippocampus. Neuroscience. 1987 Jun;21(3):869–875. doi: 10.1016/0306-4522(87)90043-1. [DOI] [PubMed] [Google Scholar]
- Ukena D., Shamim M. T., Padgett W., Daly J. W. Analogs of caffeine: antagonists with selectivity for A2 adenosine receptors. Life Sci. 1986 Aug 25;39(8):743–750. doi: 10.1016/0024-3205(86)90023-8. [DOI] [PubMed] [Google Scholar]
- Wessler I., Kilbinger H. Release of [3H]acetylcholine from a modified rat phrenic nerve-hemidiaphragm preparation. Naunyn Schmiedebergs Arch Pharmacol. 1986 Dec;334(4):357–364. doi: 10.1007/BF00569370. [DOI] [PubMed] [Google Scholar]
- White T. D., MacDonald W. F. Neural release of ATP and adenosine. Ann N Y Acad Sci. 1990;603:287–299. doi: 10.1111/j.1749-6632.1990.tb37680.x. [DOI] [PubMed] [Google Scholar]
- Wieraszko A., Goldsmith G., Seyfried T. N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 1989 Apr 24;485(2):244–250. doi: 10.1016/0006-8993(89)90567-2. [DOI] [PubMed] [Google Scholar]
- Wiklund N. P., Gustafsson L. E., Lundin J. Pre- and postjunctional modulation of cholinergic neuroeffector transmission by adenine nucleotides. Experiments with agonist and antagonist. Acta Physiol Scand. 1985 Dec;125(4):681–691. doi: 10.1111/j.1748-1716.1985.tb07771.x. [DOI] [PubMed] [Google Scholar]
- Zimmermann H. 5'-Nucleotidase: molecular structure and functional aspects. Biochem J. 1992 Jul 15;285(Pt 2):345–365. doi: 10.1042/bj2850345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann H., Vogel M., Laube U. Hippocampal localization of 5'-nucleotidase as revealed by immunocytochemistry. Neuroscience. 1993 Jul;55(1):105–112. doi: 10.1016/0306-4522(93)90458-r. [DOI] [PubMed] [Google Scholar]
- de Mendonça A., Ribeiro J. A. Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience. 1994 Sep;62(2):385–390. doi: 10.1016/0306-4522(94)90373-5. [DOI] [PubMed] [Google Scholar]