Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Nov;119(6):1269–1275. doi: 10.1111/j.1476-5381.1996.tb16032.x

Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits.

H Mitani 1, T Bandoh 1, J Ishikawa 1, M Kimura 1, T Totsuka 1, S Hayashi 1
PMCID: PMC1915883  PMID: 8937733

Abstract

1. The effects of fluvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on the vascular angiotensin converting enzyme (ACE) activity in hyperlipidaemic rabbits were compared with those of enalapril, an ACE inhibitor. 2. Rabbits were fed a 1.5% cholesterol containing diet or normal diet for 16 weeks and treated with either fluvastatin or enalapril in the diet at the respective doses of 2 and 10 mg kg-1 day-1. The total cholesterol, triglyceride and phospholipid levels in serum were significantly increased in rabbits fed the high cholesterol diet. Treatment with fluvastatin but not enalapril resulted in a decrease in serum lipids. 3. The vascular ACE activities assessed via the cleavage rate from synthetic substrate in the aortic arches and upper thoracic aortae were increased by 8 to 10 times when the rabbits were made hyperlipidaemic. Fluvastatin as well as enalapril significantly lowered the tissue ACE in the aortae. 4. The ACE activities in serum did not alter in hyperlipidaemic rabbits either in the presence or absence of fluvastatin. The serum ACE activity was lowered by enalapril. 5. The lipid peroxide in serum as well as the plaque area in the thoracic aorta was significantly increased in the cholesterol diet-fed rabbits. Treatment with fluvastatin or enalapril reduced both serum lipid peroxide and plaque formation. The relaxant responses to acetylcoholine (ACh) were significantly suppressed in the cholesterol-fed rabbits. Treatment with fluvastatin or enalapril significantly reversed the suppression of ACh-induced relaxation. 6. It seems that the reduction of vascular ACE is not coupled to lipids and ACE activity in serum, but rather to lipid peroxidation. Thus, the decrease in vascular ACE activity by fluvastatin as well as the lipid-lowering effect may reduce the risk of atherosclerosis progression in the vasculature.

Full text

PDF
1269

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberg G., Ferrer P. Effects of captopril on atherosclerosis in cynomolgus monkeys. J Cardiovasc Pharmacol. 1990;15 (Suppl 5):S65–S72. [PubMed] [Google Scholar]
  2. Bernini F., Scurati N., Bonfadini G., Fumagalli R. HMG-CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages. Arterioscler Thromb Vasc Biol. 1995 Sep;15(9):1352–1358. doi: 10.1161/01.atv.15.9.1352. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chobanian A. V., Haudenschild C. C., Nickerson C., Drago R. Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension. 1990 Mar;15(3):327–331. doi: 10.1161/01.hyp.15.3.327. [DOI] [PubMed] [Google Scholar]
  5. Corsini A., Maggi F. M., Catapano A. L. Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol Res. 1995 Jan;31(1):9–27. doi: 10.1016/1043-6618(95)80042-5. [DOI] [PubMed] [Google Scholar]
  6. Corsini A., Raiteri M., Soma M. R., Bernini F., Fumagalli R., Paoletti R. Pathogenesis of atherosclerosis and the role of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Am J Cardiol. 1995 Jul 13;76(2):21A–28A. doi: 10.1016/s0002-9149(05)80011-6. [DOI] [PubMed] [Google Scholar]
  7. Daemen M. J., Lombardi D. M., Bosman F. T., Schwartz S. M. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991 Feb;68(2):450–456. doi: 10.1161/01.res.68.2.450. [DOI] [PubMed] [Google Scholar]
  8. Davidson M. H. Fluvastatin Long-Term Extension Trial (FLUENT): summary of efficacy and safety. Am J Med. 1994 Jun 6;96(6A):41S–44S. doi: 10.1016/0002-9343(94)90231-3. [DOI] [PubMed] [Google Scholar]
  9. Dzau V. J. Local expression and pathophysiological role of renin-angiotensin in the blood vessels and heart. Basic Res Cardiol. 1993;88 (Suppl 1):1–14. doi: 10.1007/978-3-642-72497-8_1. [DOI] [PubMed] [Google Scholar]
  10. Dzau V. J. Vascular renin-angiotensin system and vascular protection. J Cardiovasc Pharmacol. 1993;22 (Suppl 5):S1–S9. doi: 10.1097/00005344-199322005-00002. [DOI] [PubMed] [Google Scholar]
  11. Fennessy P. A., Campbell J. H., Campbell G. R. Perindopril inhibits both the development of atherosclerosis in the cholesterol-fed rabbit and lipoprotein binding to smooth muscle cells in culture. Atherosclerosis. 1994 Mar;106(1):29–41. doi: 10.1016/0021-9150(94)90080-9. [DOI] [PubMed] [Google Scholar]
  12. Finta K. M., Fischer M. J., Lee L., Gordon D., Pitt B., Webb R. C. Ramipril prevents impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet. Atherosclerosis. 1993 May;100(2):149–156. doi: 10.1016/0021-9150(93)90201-5. [DOI] [PubMed] [Google Scholar]
  13. Giroux L. M., Davignon J., Naruszewicz M. Simvastatin inhibits the oxidation of low-density lipoproteins by activated human monocyte-derived macrophages. Biochim Biophys Acta. 1993 Jan 10;1165(3):335–338. doi: 10.1016/0005-2760(93)90145-y. [DOI] [PubMed] [Google Scholar]
  14. Keidar S., Kaplan M., Aviram M. Angiotensin II-modified LDL is taken up by macrophages via the scavenger receptor, leading to cellular cholesterol accumulation. Arterioscler Thromb Vasc Biol. 1996 Jan;16(1):97–105. doi: 10.1161/01.atv.16.1.97. [DOI] [PubMed] [Google Scholar]
  15. Keidar S., Kaplan M., Hoffman A., Aviram M. Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Atherosclerosis. 1995 Jun;115(2):201–215. doi: 10.1016/0021-9150(94)05514-j. [DOI] [PubMed] [Google Scholar]
  16. Kimura M., Maeda K., Harasawa Y., Ohno Y., Nakamura M., Sakurai I., Hayashi S. Recovery of endothelium-dependent responses by reseeding endothelial cells in culture onto the denuded coronary artery. J Pharmacol Exp Ther. 1992 Aug;262(2):841–849. [PubMed] [Google Scholar]
  17. Kowala M. C., Grove R. I., Aberg G. Inhibitors of angiotensin converting enzyme decrease early atherosclerosis in hyperlipidemic hamsters. Fosinopril reduces plasma cholesterol and captopril inhibits macrophage-foam cell accumulation independently of blood pressure and plasma lipids. Atherosclerosis. 1994 Jul;108(1):61–72. doi: 10.1016/0021-9150(94)90037-x. [DOI] [PubMed] [Google Scholar]
  18. Linz W., Wiemer G., Gohlke P., Unger T., Schölkens B. A. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev. 1995 Mar;47(1):25–49. [PubMed] [Google Scholar]
  19. Mak I. T., Freedman A. M., Dickens B. F., Weglicki W. B. Protective effects of sulfhydryl-containing angiotensin converting enzyme inhibitors against free radical injury in endothelial cells. Biochem Pharmacol. 1990 Nov 1;40(9):2169–2175. doi: 10.1016/0006-2952(90)90250-o. [DOI] [PubMed] [Google Scholar]
  20. Miyazaki M., Okunishi H., Nishimura K., Toda N. Vascular angiotensin-converting enzyme activity in man and other species. Clin Sci (Lond) 1984 Jan;66(1):39–45. doi: 10.1042/cs0660039. [DOI] [PubMed] [Google Scholar]
  21. Miyazaki M., Okunishi H., Okamura T., Toda N. Elevated vascular angiotensin converting enzyme in chronic two-kidney, one clip hypertension in the dog. J Hypertens. 1987 Apr;5(2):155–160. doi: 10.1097/00004872-198704000-00005. [DOI] [PubMed] [Google Scholar]
  22. Morishita R., Gibbons G. H., Ellison K. E., Lee W., Zhang L., Yu H., Kaneda Y., Ogihara T., Dzau V. J. Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme. J Clin Invest. 1994 Sep;94(3):978–984. doi: 10.1172/JCI117464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Overturf M., Sybers H., Schaper J., Taegtmeyer H. Hypertension and atherosclerosis in cholesterol-fed rabbits. Part 1. Mild, two-kidney, one-clip Goldblatt hypertension treated with enalapril. Atherosclerosis. 1986 Mar;59(3):283–299. doi: 10.1016/0021-9150(86)90124-3. [DOI] [PubMed] [Google Scholar]
  24. Plosker G. L., Wagstaff A. J. Fluvastatin: a review of its pharmacology and use in the management of hypercholesterolaemia. Drugs. 1996 Mar;51(3):433–459. doi: 10.2165/00003495-199651030-00011. [DOI] [PubMed] [Google Scholar]
  25. Powell J. S., Clozel J. P., Müller R. K., Kuhn H., Hefti F., Hosang M., Baumgartner H. R. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science. 1989 Jul 14;245(4914):186–188. doi: 10.1126/science.2526370. [DOI] [PubMed] [Google Scholar]
  26. Rakugi H., Wang D. S., Dzau V. J., Pratt R. E. Potential importance of tissue angiotensin-converting enzyme inhibition in preventing neointima formation. Circulation. 1994 Jul;90(1):449–455. doi: 10.1161/01.cir.90.1.449. [DOI] [PubMed] [Google Scholar]
  27. Schuh J. R., Blehm D. J., Frierdich G. E., McMahon E. G., Blaine E. H. Differential effects of renin-angiotensin system blockade on atherogenesis in cholesterol-fed rabbits. J Clin Invest. 1993 Apr;91(4):1453–1458. doi: 10.1172/JCI116350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shiomi M., Shiraishi M., Yata T., Ito T. Effect of fluvastatin sodium on secretion of very low density lipoprotein and serum cholesterol levels. In vivo study using low density lipoprotein receptor deficient watanabe heritable hyperlipidemic rabbits. Arzneimittelforschung. 1994 Oct;44(10):1154–1156. [PubMed] [Google Scholar]
  30. Shiota N., Okunishi H., Fukamizu A., Sakonjo H., Kikumori M., Nishimura T., Nakagawa T., Murakami K., Miyazaki M. Activation of two angiotensin-generating systems in the balloon-injured artery. FEBS Lett. 1993 Jun 1;323(3):239–242. doi: 10.1016/0014-5793(93)81348-4. [DOI] [PubMed] [Google Scholar]
  31. Texter M., Lees R. S., Pitt B., Dinsmore R. E., Uprichard A. C. The QUinapril Ischemic Event Trial (QUIET) design and methods: evaluation of chronic ACE inhibitor therapy after coronary artery intervention. Cardiovasc Drugs Ther. 1993 Apr;7(2):273–282. doi: 10.1007/BF00878518. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES