Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Nov;119(6):1187–1196. doi: 10.1111/j.1476-5381.1996.tb16021.x

The D1 receptor-mediated effects of the ergoline derivative LEK-8829 in rats with unilateral 6-hydroxydopamine lesions.

M Zivin 1, L Sprah 1, D Sket 1
PMCID: PMC1915887  PMID: 8937722

Abstract

1. Previous experiments have suggested a potential atypical antipsychotic activity of the ergoline derivative LEK-8829. In vitro experiments showed a high affinity to 5-HT1A, 5-HT2 and D2 receptors (the ratio of pKi values 5-HT2/D2 = 1.11) and a moderate affinity to D1 receptors. In vivo experiments showed antagonism of dopamine and 5-hydroxytryptamine (5-HT) receptor-linked behaviours. 2. In the present study, the rats with unilateral dopaminergic deafferentation of the striatum, induced by the lesion of the median forebrain bundle with 6-hydroxydopamine (6-OHDA), were used to determine the effects of LEK-8829 on turning behaviour and on striatal c-fos mRNA levels. 3. The administration of LEK-8829 induced a long lasting contralateral turning behaviour that was dose-dependent. It was found that the specific D1 receptor antagonist SCH-23390 but not the D2 receptor antagonist haloperidol or 5-HT1A antagonist pindolol, dose-dependently inhibited the turning behaviour induced by LEK-8829. 4. In an attempt to clarify the D1:D2 receptor interactions involved in the action of LEK-8829 in the 6OHDA model, we used in situ hybridization histochemistry to compare the effect of SCH-23390 pretreatment on striatal c-fos mRNA expression induced either by LEK-8829 or by the typical antipsychotic haloperidol. 5. LEK-8829 induced a bilateral striatal c-fos mRNA expression that was significantly higher in the denervated striatum as compared to the intact striatum and was completely blocked on both sides by pretreatment with SCH-23390. In contrast, haloperidol-induced striatal c-fos mRNA expression was limited to the innervated striatum and was not blocked by SCH-23390. 6. Our data demonstrate an intrinsic activity of LEK-8829 on D1 receptors that is potentiated in the dopamine-depleted striatum. We conclude, therefore, that the putative atypical antipsychotic LEK-8829 may prove useful as an experimental tool for the study of D1:D2 receptor interactions and could have beneficial effects in the treatment of drug-induced psychosis in patients with Parkinson's disease.

Full text

PDF
1187

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnauld E., Arsaut J., Demotes-Mainard J. Functional heterogeneity of the caudate-putamen as revealed by c-fos induction in response to D1 receptor activation. Brain Res Mol Brain Res. 1993 Jun;18(4):339–342. doi: 10.1016/0169-328x(93)90099-b. [DOI] [PubMed] [Google Scholar]
  2. Battaglia G., Norman A. B., Hess E. J., Creese I. Functional recovery of D1 dopamine receptor-mediated stimulation of rat striatal adenylate cyclase activity following irreversible receptor modification by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ): evidence for spare receptors. Neurosci Lett. 1986 Sep 12;69(3):290–295. doi: 10.1016/0304-3940(86)90496-9. [DOI] [PubMed] [Google Scholar]
  3. Bhat R. V., Baraban J. M. Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems. J Pharmacol Exp Ther. 1993 Oct;267(1):496–505. [PubMed] [Google Scholar]
  4. Bhat R. V., Cole A. J., Baraban J. M. Role of monoamine systems in activation of zif268 by cocaine. J Psychiatry Neurosci. 1992 Sep;17(3):94–102. [PMC free article] [PubMed] [Google Scholar]
  5. Buonamici M., Cervini M. A., Maj R., Mantegani S., Rossi A. C. A new dopamine agonist in dopamine deprived systems: FCE 23884. Neurochem Int. 1992 Mar;20 (Suppl):179S–183S. doi: 10.1016/0197-0186(92)90235-j. [DOI] [PubMed] [Google Scholar]
  6. Buonamici M., Mantegani S., Cervini M. A., Maj R., Rossi A. C., Caccia C., Carfagna N., Carminati P., Fariello R. G. FCE 23884, substrate-dependent interaction with the dopaminergic system. I. Preclinical behavioral studies. J Pharmacol Exp Ther. 1991 Oct;259(1):345–355. [PubMed] [Google Scholar]
  7. Carfagna N., Caccia C., Mantegani S., Cavanus S., Fornaretto M. G., Buonamici M., Rossi A. C., Roncucci R., Fariello R. G. FCE 23884, substrate-dependent interaction with the dopaminergic system. II. Preclinical biochemical studies. J Pharmacol Exp Ther. 1991 Oct;259(1):356–364. [PubMed] [Google Scholar]
  8. Curran T., Gordon M. B., Rubino K. L., Sambucetti L. C. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene. 1987;2(1):79–84. [PubMed] [Google Scholar]
  9. Dragunow M., Robertson G. S., Faull R. L., Robertson H. A., Jansen K. D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience. 1990;37(2):287–294. doi: 10.1016/0306-4522(90)90399-o. [DOI] [PubMed] [Google Scholar]
  10. Fink-Jensen A., Kristensen P. Effects of typical and atypical neuroleptics on Fos protein expression in the rat forebrain. Neurosci Lett. 1994 Nov 21;182(1):115–118. doi: 10.1016/0304-3940(94)90220-8. [DOI] [PubMed] [Google Scholar]
  11. Gerber R., Altar C. A., Liebman J. M. Rotational behavior induced by 8-hydroxy-DPAT, a putative 5HT-1A agonist, in 6-hydroxydopamine-lesioned rats. Psychopharmacology (Berl) 1988;94(2):178–182. doi: 10.1007/BF00176841. [DOI] [PubMed] [Google Scholar]
  12. Gerfen C. R., Engber T. M., Mahan L. C., Susel Z., Chase T. N., Monsma F. J., Jr, Sibley D. R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990 Dec 7;250(4986):1429–1432. doi: 10.1126/science.2147780. [DOI] [PubMed] [Google Scholar]
  13. Greene P., Cote L., Fahn S. Treatment of drug-induced psychosis in Parkinson's disease with clozapine. Adv Neurol. 1993;60:703–706. [PubMed] [Google Scholar]
  14. Grima B., Lamouroux A., Blanot F., Biguet N. F., Mallet J. Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci U S A. 1985 Jan;82(2):617–621. doi: 10.1073/pnas.82.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hu X. T., Wachtel S. R., Galloway M. P., White F. J. Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. J Neurosci. 1990 Jul;10(7):2318–2329. doi: 10.1523/JNEUROSCI.10-07-02318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klug J. M., Norman A. B. Long-term sensitization of apomorphine-induced rotation behavior in rats with dopamine deafferentation or excitotoxin lesions of the striatum. Pharmacol Biochem Behav. 1993 Oct;46(2):397–403. doi: 10.1016/0091-3057(93)90370-9. [DOI] [PubMed] [Google Scholar]
  17. Konradi C., Kobierski L. A., Nguyen T. V., Heckers S., Hyman S. E. The cAMP-response-element-binding protein interacts, but Fos protein does not interact, with the proenkephalin enhancer in rat striatum. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7005–7009. doi: 10.1073/pnas.90.15.7005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krisch I., Bole-Vunduk B., Pepelnak M., Lavric B., Ocvirk A., Budihna M. V., Sket D. Pharmacological studies with two new ergoline derivatives, the potential antipsychotics LEK-8829 and LEK-8841. J Pharmacol Exp Ther. 1994 Oct;271(1):343–352. [PubMed] [Google Scholar]
  19. Le Moine C., Normand E., Bloch B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4205–4209. doi: 10.1073/pnas.88.10.4205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Le Moine C., Normand E., Guitteny A. F., Fouque B., Teoule R., Bloch B. Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci U S A. 1990 Jan;87(1):230–234. doi: 10.1073/pnas.87.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacGibbon G. A., Lawlor P. A., Bravo R., Dragunow M. Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja. Brain Res Mol Brain Res. 1994 Apr;23(1-2):21–32. doi: 10.1016/0169-328x(94)90207-0. [DOI] [PubMed] [Google Scholar]
  22. Markstein R., Enz A., Vigouret J. M., Jaton A., Closse A., Briner U., Gull P. Biochemical, behavioural, and endocrine effects of CK 204-933, a novel 8 beta-ergolene. J Neural Transm. 1987;69(3-4):179–199. doi: 10.1007/BF01244340. [DOI] [PubMed] [Google Scholar]
  23. Markstein R., Seiler M. P., Jaton A., Briner U. Structure activity relationship and therapeutic uses of dopaminergic ergots. Neurochem Int. 1992 Mar;20 (Suppl):211S–214S. doi: 10.1016/0197-0186(92)90241-i. [DOI] [PubMed] [Google Scholar]
  24. Merchant K. M., Dorsa D. M. Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3447–3451. doi: 10.1073/pnas.90.8.3447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller J. C. Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J Neurochem. 1990 Apr;54(4):1453–1455. doi: 10.1111/j.1471-4159.1990.tb01983.x. [DOI] [PubMed] [Google Scholar]
  26. Morelli M., Fenu S., Garau L., Di Chiara G. Time and dose dependence of the 'priming' of the expression of dopamine receptor supersensitivity. Eur J Pharmacol. 1989 Mar 21;162(2):329–335. doi: 10.1016/0014-2999(89)90296-3. [DOI] [PubMed] [Google Scholar]
  27. Nguyen T. V., Kosofsky B. E., Birnbaum R., Cohen B. M., Hyman S. E. Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4270–4274. doi: 10.1073/pnas.89.10.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paul M. L., Graybiel A. M., David J. C., Robertson H. A. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease. J Neurosci. 1992 Oct;12(10):3729–3742. doi: 10.1523/JNEUROSCI.12-10-03729.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robertson G. S., Fibiger H. C. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience. 1992;46(2):315–328. doi: 10.1016/0306-4522(92)90054-6. [DOI] [PubMed] [Google Scholar]
  30. Robertson G. S., Matsumura H., Fibiger H. C. Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther. 1994 Nov;271(2):1058–1066. [PubMed] [Google Scholar]
  31. Robertson G. S., Robertson H. A. Synergistic effects of D1 and D2 dopamine agonists on turning behaviour in rats. Brain Res. 1986 Oct 8;384(2):387–390. doi: 10.1016/0006-8993(86)91178-9. [DOI] [PubMed] [Google Scholar]
  32. Robertson G. S., Vincent S. R., Fibiger H. C. D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience. 1992 Jul;49(2):285–296. doi: 10.1016/0306-4522(92)90096-k. [DOI] [PubMed] [Google Scholar]
  33. Robertson H. A., Peterson M. R., Murphy K., Robertson G. S. D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res. 1989 Dec 4;503(2):346–349. doi: 10.1016/0006-8993(89)91689-2. [DOI] [PubMed] [Google Scholar]
  34. Rogue P., Vincendon G. Dopamine D2 receptor antagonists induce immediate early genes in the rat striatum. Brain Res Bull. 1992 Sep-Oct;29(3-4):469–472. doi: 10.1016/0361-9230(92)90084-b. [DOI] [PubMed] [Google Scholar]
  35. Sirinathsinghji D. J., Morris B. J., Wisden W., Northrop A., Hunt S. P., Dunnett S. B. Gene expression in striatal grafts--I. Cellular localization of neurotransmitter mRNAs. Neuroscience. 1990;34(3):675–686. doi: 10.1016/0306-4522(90)90174-3. [DOI] [PubMed] [Google Scholar]
  36. Sirinathsinghji D. J., Schuligoi R., Heavens R. P., Dixon A., Iversen S. D., Hill R. G. Temporal changes in the messenger RNA levels of cellular immediate early genes and neurotransmitter/receptor genes in the rat neostriatum and substantia nigra after acute treatment with eticlopride, a dopamine D2 receptor antagonist. Neuroscience. 1994 Sep;62(2):407–423. doi: 10.1016/0306-4522(94)90376-x. [DOI] [PubMed] [Google Scholar]
  37. Sonsalla P. K., Manzino L., Heikkila R. E. Interactions of D1 and D2 dopamine receptors on the ipsilateral vs. contralateral side in rats with unilateral lesions of the dopaminergic nigrostriatal pathway. J Pharmacol Exp Ther. 1988 Oct;247(1):180–185. [PubMed] [Google Scholar]
  38. Temlett J. A., Quinn N. P., Jenner P. G., Marsden C. D., Pourcher E., Bonnet A. M., Agid Y., Markstein R., Lataste X. Antiparkinsonian activity of CY 208-243, a partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients with Parkinson's disease. Mov Disord. 1989;4(3):261–265. doi: 10.1002/mds.870040307. [DOI] [PubMed] [Google Scholar]
  39. Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:69–93. doi: 10.1111/j.1365-201x.1971.tb11000.x. [DOI] [PubMed] [Google Scholar]
  40. Ungerstedt U. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl. 1971;367:49–68. doi: 10.1111/j.1365-201x.1971.tb10999.x. [DOI] [PubMed] [Google Scholar]
  41. Watts V. J., Lawler C. P., Gonzales A. J., Zhou Q. Y., Civelli O., Nichols D. E., Mailman R. B. Spare receptors and intrinsic activity: studies with D1 dopamine receptor agonists. Synapse. 1995 Oct;21(2):177–187. doi: 10.1002/syn.890210211. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES