Abstract
1. Hoe 694 (3-methylsulphonyl-4-piperidinobenzoyl)guanidine methanesulphonate) was characterized as a new, potent, non-amiloride inhibitor of the Na+/H+ exchanger. In order to elucidate the role of the Na+/H+ exchanger isoform 1 (NHE-1) in the regulation of vascular smooth muscle cell growth, we investigated the effects of different amiloride analogues and of Hoe 694 on angiotensin II-induced cell growth. Since intracellular pH, the intracellular free Ca2+ concentration and the expression of the transcription factor c-fos seem to be involved in the regulation of cell growth, the effects of the amiloride analogues and Hoe 694 on the angiotensin II-induced changes in these three parameters were examined. 2. Measurement of cytosolic Ca2+ and pH in cell monolayers was performed using fura-2/AM and BCECF/AM, respectively. The effect of angiotensin II on cell growth was examined using (1) [3H]-thymidine incorporation, (2) the bromo-2-deoxyuridine (BrdU) immunfluorescence assay, (3) the colorimetric determination of cell mitochondrial dehydrogenase activity and (4) determination of cell number. Total RNA was extracted from cells by the guanidinium isothiocyanate/CsCl procedure. The expression of c-fos was quantitated by Northern blotting. 3. Various amiloride analogues inhibited the angiotensin II-induced stimulation of the Na+/H+ exchanger, the increase in cytosolic Ca2+ and cell growth but not the induction of c-fos mRNA. Hoe 694 (1-25 microM) dose-dependently inhibited the angiotensin II-induced stimulation of the Na+/H+ exchanger but had no significant effects on cytosolic Ca2+, c-fos mRNA levels or cell growth. 4. Our findings support the concept that activation of the Na+/H+ exchanger is not essential for angiotensin II-induced vascular smooth muscle cell growth.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson P. S. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol. 1985;47:545–560. doi: 10.1146/annurev.ph.47.030185.002553. [DOI] [PubMed] [Google Scholar]
- Bagby S. P., Kirk E. A., Mitchell L. H., O'Reilly M. M., Holden W. E., Stenberg P. E., Bakke A. C. Proliferative synergy of ANG II and EGF in porcine aortic vascular smooth muscle cells. Am J Physiol. 1993 Aug;265(2 Pt 2):F239–F249. doi: 10.1152/ajprenal.1993.265.2.F239. [DOI] [PubMed] [Google Scholar]
- Berk B. C., Brock T. A., Gimbrone M. A., Jr, Alexander R. W. Early agonist-mediated ionic events in cultured vascular smooth muscle cells. Calcium mobilization is associated with intracellular acidification. J Biol Chem. 1987 Apr 15;262(11):5065–5072. [PubMed] [Google Scholar]
- Berk B. C., Vekshtein V., Gordon H. M., Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989 Apr;13(4):305–314. doi: 10.1161/01.hyp.13.4.305. [DOI] [PubMed] [Google Scholar]
- Bertrand B., Wakabayashi S., Ikeda T., Pouysségur J., Shigekawa M. The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J Biol Chem. 1994 May 6;269(18):13703–13709. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chamley-Campbell J., Campbell G. R., Ross R. The smooth muscle cell in culture. Physiol Rev. 1979 Jan;59(1):1–61. doi: 10.1152/physrev.1979.59.1.1. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Criscione L., Thomann H., Rodriguez C., Eglème C., Chiesi M. Blockade of endothelin-induced contractions by dichlorobenzamil: mechanism of action. Biochem Biophys Res Commun. 1989 Aug 30;163(1):247–254. doi: 10.1016/0006-291x(89)92128-1. [DOI] [PubMed] [Google Scholar]
- Daemen M. J., Lombardi D. M., Bosman F. T., Schwartz S. M. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991 Feb;68(2):450–456. doi: 10.1161/01.res.68.2.450. [DOI] [PubMed] [Google Scholar]
- Fleming I., Hecker M., Busse R. Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res. 1994 Jun;74(6):1220–1226. doi: 10.1161/01.res.74.6.1220. [DOI] [PubMed] [Google Scholar]
- Garcia M. L., King V. F., Shevell J. L., Slaughter R. S., Suarez-Kurtz G., Winquist R. J., Kaczorowski G. J. Amiloride analogs inhibit L-type calcium channels and display calcium entry blocker activity. J Biol Chem. 1990 Mar 5;265(7):3763–3771. [PubMed] [Google Scholar]
- Ghigo D., Bussolino F., Garbarino G., Heller R., Turrini F., Pescarmona G., Cragoe E. J., Jr, Pegoraro L., Bosia A. Role of Na+/H+ exchange in thrombin-induced platelet-activating factor production by human endothelial cells. J Biol Chem. 1988 Dec 25;263(36):19437–19446. [PubMed] [Google Scholar]
- Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hatori N., Fine B. P., Nakamura A., Cragoe E., Jr, Aviv A. Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J Biol Chem. 1987 Apr 15;262(11):5073–5078. [PubMed] [Google Scholar]
- Hepler P. K. The role of calcium in cell division. Cell Calcium. 1994 Oct;16(4):322–330. doi: 10.1016/0143-4160(94)90096-5. [DOI] [PubMed] [Google Scholar]
- Mahnensmith R. L., Aronson P. S. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res. 1985 Jun;56(6):773–788. doi: 10.1161/01.res.56.6.773. [DOI] [PubMed] [Google Scholar]
- Mitsuka M., Nagae M., Berk B. C. Na(+)-H+ exchange inhibitors decrease neointimal formation after rat carotid injury. Effects on smooth muscle cell migration and proliferation. Circ Res. 1993 Aug;73(2):269–275. doi: 10.1161/01.res.73.2.269. [DOI] [PubMed] [Google Scholar]
- Owens G. K. Differential effects of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy, and hyperplasia in the spontaneously hypertensive rat. Circ Res. 1985 Apr;56(4):525–536. doi: 10.1161/01.res.56.4.525. [DOI] [PubMed] [Google Scholar]
- Presek P., Reuter C. Amiloride inhibits the protein tyrosine kinases associated with the cellular and the transforming src-gene products. Biochem Pharmacol. 1987 Sep 1;36(17):2821–2826. doi: 10.1016/0006-2952(87)90271-1. [DOI] [PubMed] [Google Scholar]
- Rana R. S., Hokin L. E. Role of phosphoinositides in transmembrane signaling. Physiol Rev. 1990 Jan;70(1):115–164. doi: 10.1152/physrev.1990.70.1.115. [DOI] [PubMed] [Google Scholar]
- Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
- Sachinidis A., Flesch M., Ko Y., Schrör K., Böhm M., Düsing R., Vetter H. Thromboxane A2 and vascular smooth muscle cell proliferation. Hypertension. 1995 Nov;26(5):771–780. doi: 10.1161/01.hyp.26.5.771. [DOI] [PubMed] [Google Scholar]
- Sachinidis A., Ko Y., Nettekoven W., Wieczorek A. J., Düsing R., Vetter H. The effect of angiotensin II on DNA synthesis varies considerably in vascular smooth muscle cells from different Wistar-Kyoto rats. J Hypertens. 1992 Oct;10(10):1159–1164. doi: 10.1097/00004872-199210000-00008. [DOI] [PubMed] [Google Scholar]
- Sachinidis A., el-Haschimi K., Ko Y., Seul C., Düsing R., Vetter H. CV-11974, the active metabolite of TCV-116 (Candesarten), inhibits the synergistic or additive effect of different growth factors on angiotensin II-induced proliferation of vascular smooth muscle cells. Biochem Pharmacol. 1996 Jul 12;52(1):123–126. doi: 10.1016/0006-2952(96)00171-2. [DOI] [PubMed] [Google Scholar]
- Sage S. O., Jobson T. M., Rink T. J. Agonist-evoked changes in cytosolic pH and calcium concentration in human platelets: studies in physiological bicarbonate. J Physiol. 1990 Jan;420:31–45. doi: 10.1113/jphysiol.1990.sp017900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sardet C., Counillon L., Franchi A., Pouysségur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science. 1990 Feb 9;247(4943):723–726. doi: 10.1126/science.2154036. [DOI] [PubMed] [Google Scholar]
- Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
- Scholz W., Albus U., Lang H. J., Linz W., Martorana P. A., Englert H. C., Schölkens B. A. Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Br J Pharmacol. 1993 Jun;109(2):562–568. doi: 10.1111/j.1476-5381.1993.tb13607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz S. M., Campbell G. R., Campbell J. H. Replication of smooth muscle cells in vascular disease. Circ Res. 1986 Apr;58(4):427–444. doi: 10.1161/01.res.58.4.427. [DOI] [PubMed] [Google Scholar]
- Schwartz S. M., Reidy M. A. Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Hum Pathol. 1987 Mar;18(3):240–247. doi: 10.1016/s0046-8177(87)80006-0. [DOI] [PubMed] [Google Scholar]
- Siffert W., Akkerman J. W. Activation of sodium-proton exchange is a prerequisite for Ca2+ mobilization in human platelets. 1987 Jan 29-Feb 4Nature. 325(6103):456–458. doi: 10.1038/325456a0. [DOI] [PubMed] [Google Scholar]
- Siffert W., Düsing R. Sodium-proton exchange and primary hypertension. An update. Hypertension. 1995 Oct;26(4):649–655. doi: 10.1161/01.hyp.26.4.649. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Smith L., Brown E. R., Barnes D., Sabir M. A., Davis J. S., Farese R. V. Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7812–7816. doi: 10.1073/pnas.81.24.7812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turla M. B., Thompson M. M., Corjay M. H., Owens G. K. Mechanisms of angiotensin II- and arginine vasopressin-induced increases in protein synthesis and content in cultured rat aortic smooth muscle cells. Evidence for selective increases in smooth muscle isoactin expression. Circ Res. 1991 Jan;68(1):288–299. doi: 10.1161/01.res.68.1.288. [DOI] [PubMed] [Google Scholar]
- Verma I. M., Sassone-Corsi P. Proto-oncogene fos: complex but versatile regulation. Cell. 1987 Nov 20;51(4):513–514. doi: 10.1016/0092-8674(87)90115-2. [DOI] [PubMed] [Google Scholar]
- Wakabayashi S., Bertrand B., Ikeda T., Pouysségur J., Shigekawa M. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H(+)-sensitive and Ca2+ regulation-defective. J Biol Chem. 1994 May 6;269(18):13710–13715. [PubMed] [Google Scholar]
- Weissberg P. L., Grainger D. J., Shanahan C. M., Metcalfe J. C. Approaches to the development of selective inhibitors of vascular smooth muscle cell proliferation. Cardiovasc Res. 1993 Jul;27(7):1191–1198. doi: 10.1093/cvr/27.7.1191. [DOI] [PubMed] [Google Scholar]


