Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Nov;119(5):845–850. doi: 10.1111/j.1476-5381.1996.tb15749.x

Possible in vivo 5-HT reuptake blocking properties of 8-OH-DPAT assessed by measuring hippocampal extracellular 5-HT using microdialysis in rats.

M B Assié 1, W Koek 1
PMCID: PMC1915946  PMID: 8922730

Abstract

1. The 5-hydroxytryptamine (5-HT)1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), has been shown to label 5-HT reuptake sites. 2. To study the functional consequences of this property, the effects of 8-OH-DPAT were compared with those of the 5-HT reuptake inhibitors, paroxetine and clomipramine, and of the 5-HT1A receptor agonist flesinoxan, in vitro on 5-HT reuptake, and in vivo on the extracellular concentration of 5-HT by use of microdialysis, in rat hippocampus. Because 5-HT reuptake inhibitors reportedly attenuate the ability of (+)-fenfluramine to increase the extracellular concentration of 5-HT, the possible reversal of these effects of 8-OH-DPAT and by paroxetine were examined. 3. 8-OH-DPAT, paroxetine and clomipramine inhibited [3H]-5-HT reuptake in rat hippocampal synaptosomes (pIC50: 6.00, 8.41 and 7.00, respectively). In contrast, flesinoxan did not alter 5-HT reuptake (pIC50 < 5). 4. 8-OH-DPAT (10 and 100 microM), paroxetine (0.1 microM) and clomipramine (1 microM), administered through the dialysis probe, significantly increased the hippocampal extracellular concentration of 5-HT. In contrast, flesinoxan (100 microM) did not alter extracellular 5-HT. Moreover, the effects of 100 microM 8-OH-DPAT were not blocked by the 5-HT1A receptor antagonist, WAY-100635 (0.16 mg kg-1, s.c.). 5. The increase in extracellular 5-HT induced by 10 mg kg-1, i.p., (+)-fenfluramine was prevented not only by 0.1 microM paroxetine, but also by 100 microM 8-OH-DPAT. In addition, systemic administration of 10 mg kg-1, but not 2.5 mg kg-1, i.p. 8-OH-DPAT attenuated the increase in extracellular 5-HT induced by 2.5 mg kg-1, i.p., (+)-fenfluramine. 6. These findings suggest that the increase in extracellular 5-HT produced by local administration of 8-OH-DPAT does not involve its 5-HT1A receptor agonist properties, but may result, at least in part, from its 5-HT reuptake blocking properties.

Full text

PDF
845

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adell A., Carceller A., Artigas F. In vivo brain dialysis study of the somatodendritic release of serotonin in the Raphe nuclei of the rat: effects of 8-hydroxy-2-(di-n-propylamino)tetralin. J Neurochem. 1993 May;60(5):1673–1681. doi: 10.1111/j.1471-4159.1993.tb13390.x. [DOI] [PubMed] [Google Scholar]
  2. Alexander B. S., Wood M. D. [3H]8-OH-DPAT labels the 5-hydroxytryptamine uptake recognition site and the 5-HT1A binding site in the rat striatum. J Pharm Pharmacol. 1988 Dec;40(12):888–891. doi: 10.1111/j.2042-7158.1988.tb06296.x. [DOI] [PubMed] [Google Scholar]
  3. Assie M. B., Koek W. (-)-pindolol and (+/-)-tertatolol affect rat hippocampal 5-HT levels through mechanisms involving not only 5-HT1A, but also 5-HT1B receptors. Neuropharmacology. 1996 Feb;35(2):213–222. doi: 10.1016/0028-3908(95)00169-7. [DOI] [PubMed] [Google Scholar]
  4. Assié M. B., Koek W. Effects of 5-HT1A receptor antagonists on hippocampal 5-hydroxytryptamine levels: (S)-WAY100135, but not WAY100635, has partial agonist properties. Eur J Pharmacol. 1996 May 23;304(1-3):15–21. doi: 10.1016/0014-2999(96)00086-6. [DOI] [PubMed] [Google Scholar]
  5. Auerbach S. B., Lundberg J. F., Hjorth S. Differential inhibition of serotonin release by 5-HT and NA reuptake blockers after systemic administration. Neuropharmacology. 1995 Jan;34(1):89–96. doi: 10.1016/0028-3908(94)00137-h. [DOI] [PubMed] [Google Scholar]
  6. Benveniste H. Brain microdialysis. J Neurochem. 1989 Jun;52(6):1667–1679. doi: 10.1111/j.1471-4159.1989.tb07243.x. [DOI] [PubMed] [Google Scholar]
  7. Bosker F. J., de Winter T. Y., Klompmakers A. A., Westenberg H. G. Flesinoxan dose-dependently reduces extracellular 5-hydroxytryptamine (5-HT) in rat median raphe and dorsal hippocampus through activation of 5-HT1A receptors. J Neurochem. 1996 Jun;66(6):2546–2555. doi: 10.1046/j.1471-4159.1996.66062546.x. [DOI] [PubMed] [Google Scholar]
  8. Bosker F., Klompmakers A., Westenberg H. Extracellular 5-hydroxytryptamine in median raphe nucleus of the conscious rat is decreased by nanomolar concentrations of 8-hydroxy-2-(di-n-propylamino) tetralin and is sensitive to tetrodotoxin. J Neurochem. 1994 Dec;63(6):2165–2171. doi: 10.1046/j.1471-4159.1994.63062165.x. [DOI] [PubMed] [Google Scholar]
  9. Cheng C. H., Costall B., Naylor R. J., Rudd J. A. The effect of 5-HT receptor ligands on the uptake of [3H]5-hydroxytryptamine into rat cortical synaptosomes. Eur J Pharmacol. 1993 Aug 3;239(1-3):211–214. doi: 10.1016/0014-2999(93)90996-u. [DOI] [PubMed] [Google Scholar]
  10. Forster E. A., Cliffe I. A., Bill D. J., Dover G. M., Jones D., Reilly Y., Fletcher A. A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol. 1995 Jul 25;281(1):81–88. doi: 10.1016/0014-2999(95)00234-c. [DOI] [PubMed] [Google Scholar]
  11. Fuller R. W. Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. Life Sci. 1994;55(3):163–167. doi: 10.1016/0024-3205(94)00876-0. [DOI] [PubMed] [Google Scholar]
  12. Hamon M., Bourgoin S., Gozlan H., Hall M. D., Goetz C., Artaud F., Horn A. S. Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-(di-n-propylamino)tetralin) in the rat brain. Eur J Pharmacol. 1984 May 4;100(3-4):263–276. doi: 10.1016/0014-2999(84)90002-5. [DOI] [PubMed] [Google Scholar]
  13. Ieni J. R., Meyerson L. R. The 5-HT1A receptor probe [3H]8-OH-DPAT labels the 5-HT transporter in human platelets. Life Sci. 1988;42(3):311–320. doi: 10.1016/0024-3205(88)90640-6. [DOI] [PubMed] [Google Scholar]
  14. Kreiss D. S., Lucki I. Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther. 1994 Jun;269(3):1268–1279. [PubMed] [Google Scholar]
  15. Kreiss D. S., Wieland S., Lucki I. The presence of a serotonin uptake inhibitor alters pharmacological manipulations of serotonin release. Neuroscience. 1993 Jan;52(2):295–301. doi: 10.1016/0306-4522(93)90157-b. [DOI] [PubMed] [Google Scholar]
  16. Laferrere B., Wurtman R. J. Effect of D-fenfluramine on serotonin release in brains of anaesthetized rats. Brain Res. 1989 Dec 18;504(2):258–263. doi: 10.1016/0006-8993(89)91365-6. [DOI] [PubMed] [Google Scholar]
  17. Nakahata N., Ishimoto H., Mizuno K., Ohizumi Y., Nakanishi H. Dual effects of mastoparan on intracellular free Ca2+ concentrations in human astrocytoma cells. Br J Pharmacol. 1994 May;112(1):299–303. doi: 10.1111/j.1476-5381.1994.tb13068.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sabol K. E., Richards J. B., Seiden L. S. Fluoxetine attenuates the DL-fenfluramine-induced increase in extracellular serotonin as measured by in vivo dialysis. Brain Res. 1992 Jul 10;585(1-2):421–424. doi: 10.1016/0006-8993(92)91249-e. [DOI] [PubMed] [Google Scholar]
  19. Sarkissian C. F., Wurtman R. J., Morse A. N., Gleason R. Effects of fluoxetine or D-fenfluramine on serotonin release from, and levels in, rat frontal cortex. Brain Res. 1990 Oct 8;529(1-2):294–301. doi: 10.1016/0006-8993(90)90840-8. [DOI] [PubMed] [Google Scholar]
  20. Schoemaker H., Langer S. Z. [3H]8-OH-DPAT labels the serotonin transporter in the rat striatum. Eur J Pharmacol. 1986 May 27;124(3):371–373. doi: 10.1016/0014-2999(86)90243-8. [DOI] [PubMed] [Google Scholar]
  21. Series H. G., Cowen P. J., Sharp T. p-Chloroamphetamine (PCA), 3,4-methylenedioxy-methamphetamine (MDMA) and d-fenfluramine pretreatment attenuates d-fenfluramine-evoked release of 5-HT in vivo. Psychopharmacology (Berl) 1994 Dec;116(4):508–514. doi: 10.1007/BF02247485. [DOI] [PubMed] [Google Scholar]
  22. Sharp T., Bramwell S. R., Clark D., Grahame-Smith D. G. In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem. 1989 Jul;53(1):234–240. doi: 10.1111/j.1471-4159.1989.tb07319.x. [DOI] [PubMed] [Google Scholar]
  23. Sharp T., Bramwell S. R., Grahame-Smith D. G. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol. 1989 Feb;96(2):283–290. doi: 10.1111/j.1476-5381.1989.tb11815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sharp T., Hjorth S. Application of brain microdialysis to study the pharmacology of the 5-HT1A autoreceptor. J Neurosci Methods. 1990 Sep;34(1-3):83–90. doi: 10.1016/0165-0270(90)90045-h. [DOI] [PubMed] [Google Scholar]
  25. Sprouse J. S., McCarty D. R., Dudley M. W. Apparent regional differences in 5-HT1A binding may reflect [3H]8-OH-DPAT labeling of serotonin uptake sites. Brain Res. 1993 Jul 16;617(1):159–162. doi: 10.1016/0006-8993(93)90629-2. [DOI] [PubMed] [Google Scholar]
  26. Thomas D. R., Nelson D. R., Johnson A. M. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology (Berl) 1987;93(2):193–200. doi: 10.1007/BF00179933. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES